2019高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式 7.3 二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題課件 文.ppt
《2019高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式 7.3 二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題課件 文.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式 7.3 二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題課件 文.ppt(26頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第七章不等式 高考文數(shù) 7 3二元一次不等式 組 與簡(jiǎn)單的線性規(guī)劃問題 考點(diǎn)求線性目標(biāo)函數(shù)的最值1 二元一次不等式表示平面區(qū)域二元一次不等式Ax By C 0在平面直角坐標(biāo)系中表示直線Ax By C 0某一側(cè)所有點(diǎn)組成的平面區(qū)域 把直線畫成 虛線以表示區(qū)域不包括邊界 當(dāng)在坐標(biāo)系中畫不等式Ax By C 0所表示的平面區(qū)域時(shí) 此區(qū)域應(yīng)包括邊界 則把邊界直線畫成 實(shí)線 知識(shí)清單 2 線性規(guī)劃中的基本概念 知識(shí)拓展1 判斷Ax By C 0表示的平面區(qū)域在直線的哪一側(cè)的方法 1 當(dāng)C 0時(shí) 取原點(diǎn) 0 0 當(dāng)原點(diǎn)坐標(biāo)使Ax By C 0成立時(shí) 就是含原點(diǎn)的區(qū)域 不成立時(shí) 就是不含原點(diǎn)的區(qū)域 2 當(dāng)C 0時(shí) 取 0 1 或 1 0 當(dāng)不等式成立時(shí) 就是含所取點(diǎn)的一側(cè) 不成立時(shí) 是另一側(cè) 2 線性目標(biāo)函數(shù)z Ax By的最值與B的符號(hào)的關(guān)系當(dāng)B 0時(shí) 直線過可行域且在y軸上截距最大時(shí) z值最大 在y軸上截距最小時(shí) z值最小 當(dāng)B 0時(shí) 直線過可行域且在y軸上截距最小時(shí) z值最大 在y軸上截距最大時(shí) z值最小 3 利用圖解法解決線性規(guī)劃問題的一般步驟 1 作出可行域 將約束條件中的每一個(gè)不等式當(dāng)作等式 作出相應(yīng)的直線 并確定原不等式表示的半平面 然后求出所有半平面的交集 2 作出目標(biāo)函數(shù)的等值線 3 求出最終結(jié)果 在可行域內(nèi)平行移動(dòng)目標(biāo)函數(shù)等值線 從圖中能判定問題有唯一最優(yōu)解 或者有無窮最優(yōu)解 或者無最優(yōu)解 平面區(qū)域問題的求解方法1 二元一次不等式表示平面區(qū)域的判斷方法 特殊點(diǎn)判斷法 系數(shù)判斷法 在Ax By C 0中 當(dāng)B 0時(shí) 區(qū)域?yàn)橹本€Ax By C 0的上方 當(dāng)B 0時(shí) 區(qū)域?yàn)橹本€Ax By C 0的下方 2 二元一次不等式組表示的平面區(qū)域的應(yīng)用主要包括求平面區(qū)域的面積和已知平面區(qū)域求參數(shù)的取值范圍 對(duì)于面積問題 可以先畫出平面區(qū)域 然后判斷其形狀 求得相應(yīng)的交點(diǎn)坐標(biāo) 相關(guān)的線段長(zhǎng)度等 利用面積公式進(jìn)行求解 對(duì)于求參問題 則需根據(jù)區(qū)域的形狀判斷動(dòng)直線的位置 從而確定參數(shù)的取值范圍 方法技巧 例1 2017河北衡水中學(xué)摸底考試 7 若A為不等式組表示的平面區(qū)域 則當(dāng)a從 2連續(xù)變化到1時(shí) 動(dòng)直線x y a掃過A中的那部分區(qū)域的面積為 D A 1B 1 5C 0 75D 1 75 解題導(dǎo)引畫出區(qū)域作出直線x y 2與直線x y 1求面積 解析作出不等式組表示的區(qū)域 如圖中陰影部分 含邊界 從而可知 掃過的面積為S 2 2 1 故選D 例2 2015重慶 10 5分 若不等式組表示的平面區(qū)域?yàn)槿切?且其面積等于 則m的值為 B A 3B 1C D 3 解題導(dǎo)引畫出符合題意條件的平面區(qū)域根據(jù)條件求出A B兩點(diǎn)的縱坐標(biāo)及C D兩點(diǎn)的橫坐標(biāo) 從而表示出三角形面積根據(jù)三角形的面積建立關(guān)于m的方程 從而求得m的值 解析如圖 要使不等式組表示的平面區(qū)域?yàn)槿切?則 2m 1 所圍成的區(qū)域?yàn)?ABC S ABC S ADC S BDC 點(diǎn)A的縱坐標(biāo)為1 m 點(diǎn)B的縱坐標(biāo)為 1 m C D兩點(diǎn)的橫坐標(biāo)分別為2 2m 所以S ABC 2 2m 1 m 2 2m 1 m 1 m 2 解得m 3 舍去 或m 1 故選B 目標(biāo)函數(shù)最值問題的求解方法1 求目標(biāo)函數(shù)的最值的步驟 畫出可行域 根據(jù)目標(biāo)函數(shù)的幾何意義確定取得最優(yōu)解的點(diǎn) 求出目標(biāo)函數(shù)的最大值或最小值 2 常見的目標(biāo)函數(shù) 截距型 形如z ax by 可以轉(zhuǎn)化為y x 利用直線在y軸上的截距大小確定目標(biāo)函數(shù)的最值 距離型 形如z x a 2 y b 2 表示區(qū)域內(nèi)的動(dòng)點(diǎn) x y 與定點(diǎn) a b 連線的距離的平方 斜率型 形如z 表示區(qū)域內(nèi)的動(dòng)點(diǎn) x y 與定點(diǎn) a b 連線的斜率 例3 2016山東 4 5分 若變量x y滿足則x2 y2的最大值是 C A 4B 9C 10D 12 解析作出不等式組所表示的平面區(qū)域 如圖中陰影部分所示 包括邊界 x2 y2表示平面區(qū)域內(nèi)的點(diǎn)與原點(diǎn)的距離的平方 由圖易知平面區(qū)域內(nèi)的點(diǎn)A 3 1 與原點(diǎn)的距離最大 所以x2 y2的最大值是10 故選C 解題導(dǎo)引畫出可行域利用x2 y2的幾何意義找出最優(yōu)解求出x2 y2的最大值 例4 2016課標(biāo)全國 14 5分 若x y滿足約束條件則z x 2y的最小值為 解題導(dǎo)引畫出可行域利用平移法得到最優(yōu)解代入目標(biāo)函數(shù)得最小值 解析由約束條件畫出可行域 如圖中陰影部分所示 包括邊界 當(dāng)直線x 2y z 0過點(diǎn)B 3 4 時(shí) z取得最小值 zmin 3 2 4 5 答案 5 線性規(guī)劃中參變量問題的求解方法含參變量的線性規(guī)劃問題 參變量的設(shè)置有兩種形式 1 條件不等式組中含有參變量 由于不能明確可行域的形狀 因此 增加了解題時(shí)畫圖分析的難度 求解這類問題時(shí)要有全局觀念 結(jié)合目標(biāo)函數(shù)逆向分析題意 整體把握解題的方法 2 目標(biāo)函數(shù)中設(shè)置參變量 旨在增加探索問題的動(dòng)態(tài)性和開放性 從目標(biāo)函數(shù)的結(jié)論入手 對(duì)圖形的動(dòng)態(tài)分析 對(duì)變化過程中的相關(guān)量的準(zhǔn)確定位 是求解這類問題的主要思維方法 例5 2017安徽黃山二模 10 已知m 1 x y滿足約束條件若目標(biāo)函數(shù)z ax by a 0 b 0 的最大值為3 則 A A 有最小值B 有最大值C 有最小值D 有最大值 解題導(dǎo)引由約束條件及m 1畫出滿足題意的可行域利用z ax by a 0 b 0 的幾何意義找出最優(yōu)解利用目標(biāo)函數(shù)有最大值得出a與b的關(guān)系式利用基本不等式求得 的最小值結(jié)論 解析由m 1及約束條件作出可行域如圖 由解得A 1 5 z ax by a 0 b 0 可化為y x 由圖可知 當(dāng)直線y x 過A時(shí) 直線在y軸上的截距最大 z取最大值 則a 5b 3 又a 0 b 0 故選A 線性規(guī)劃的實(shí)際問題的求解方法1 能建立線性規(guī)劃模型的實(shí)際問題有 給定一定量的人力 物力資源 使完成的任務(wù)最大 收益最大 給定一項(xiàng)任務(wù) 使完成這項(xiàng)任務(wù)耗費(fèi)人力 物力資源最少 2 解決線性規(guī)劃實(shí)際問題的一般步驟 認(rèn)真審題 設(shè)出未知數(shù) 寫出線性約束條件和目標(biāo)函數(shù) 畫出可行域 作出目標(biāo)函數(shù)值為0時(shí)對(duì)應(yīng)的直線l0 在可行域內(nèi)平行移動(dòng)直線l0 從圖中判斷問題有唯一最優(yōu)解或有無窮最優(yōu)解或無最優(yōu)解 求出最優(yōu)解 從而得到目標(biāo)函數(shù)的最值 得到實(shí)際問題的解 寫出結(jié)論 例6 2017天津 16 13分 電視臺(tái)播放甲 乙兩套連續(xù)劇 每次播放連續(xù)劇時(shí) 需要播放廣告 已知每次播放甲 乙兩套連續(xù)劇時(shí) 連續(xù)劇播放時(shí) 長(zhǎng) 廣告播放時(shí)長(zhǎng) 收視人次如下表所示 已知電視臺(tái)每周安排的甲 乙連續(xù)劇的總播放時(shí)間不多于600分鐘 廣告的總播放時(shí)間不少于30分鐘 且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍 分別用x y表示每周計(jì)劃播出的甲 乙兩套連續(xù)劇的次數(shù) 1 用x y列出滿足題目條件的數(shù)學(xué)關(guān)系式 并畫出相應(yīng)的平面區(qū)域 2 問電視臺(tái)每周播出甲 乙兩套連續(xù)劇各多少次 才能使總收視人次最多 解題導(dǎo)引 1 建立關(guān)于x y的不等關(guān)系轉(zhuǎn)化成不等式組的形式畫出對(duì)應(yīng)的可行域 2 設(shè)出總收視人數(shù) 列出目標(biāo)函數(shù)作出基本直線l0 平移l0 得出最優(yōu)解把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題進(jìn)行作答 解析 1 由已知得 x y滿足的數(shù)學(xué)關(guān)系式為即該二元一次不等式組所表示的平面區(qū)域?yàn)閳D1中的陰影部分 圖1 2 設(shè)總收視人次為z萬 則目標(biāo)函數(shù)為z 60 x 25y 考慮z 60 x 25y 將它變形為y x 這是斜率為 隨z變化的一族平行直線 為直線在y軸上的截距 當(dāng)取得最大值時(shí) z的值最大 又因 為x y滿足約束條件 所以由圖2可知 當(dāng)直線z 60 x 25y經(jīng)過可行域上的點(diǎn)M時(shí) 截距最大 即z最大 圖2解方程組得點(diǎn)M的坐標(biāo)為 6 3 所以 電視臺(tái)每周播出甲連續(xù)劇6次 乙連續(xù)劇3次時(shí)才能使總收視人次最多- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式 7.3 二元一次不等式組與簡(jiǎn)單的線性規(guī)劃問題課件 2019 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第七 二元 一次 簡(jiǎn)單 線性規(guī)劃 問題 課件
鏈接地址:http://italysoccerbets.com/p-5754212.html