外文翻譯-鐵路車輪對(duì)的輔助磁檢測(cè)

上傳人:na****u 文檔編號(hào):56945548 上傳時(shí)間:2022-02-22 格式:DOC 頁(yè)數(shù):11 大?。?.21MB
收藏 版權(quán)申訴 舉報(bào) 下載
外文翻譯-鐵路車輪對(duì)的輔助磁檢測(cè)_第1頁(yè)
第1頁(yè) / 共11頁(yè)
外文翻譯-鐵路車輪對(duì)的輔助磁檢測(cè)_第2頁(yè)
第2頁(yè) / 共11頁(yè)
外文翻譯-鐵路車輪對(duì)的輔助磁檢測(cè)_第3頁(yè)
第3頁(yè) / 共11頁(yè)

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《外文翻譯-鐵路車輪對(duì)的輔助磁檢測(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《外文翻譯-鐵路車輪對(duì)的輔助磁檢測(cè)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 畢業(yè)設(shè)計(jì)文獻(xiàn)翻譯與原文 題目: 鐵路車輪對(duì)的輔助磁檢測(cè) 學(xué) 院: 測(cè)試與光電工程學(xué)院 專業(yè)名稱: 測(cè)控技術(shù)與儀器 班級(jí)學(xué)號(hào): 學(xué)生姓名: 指導(dǎo)教師: 二〇一五年四月 鐵路車輪對(duì)的輔助磁檢測(cè) 摘要:在工件制作的過(guò)程中,車輪對(duì)檢測(cè)可以采取許多不同的缺陷檢測(cè)方法。然而這些方法在車輪在役使用時(shí)是不

2、夠的。這篇論文旨在介紹一種針對(duì)車輪對(duì)的圓弧表面磁參數(shù)變化的檢測(cè)案例。這些圓弧表面磁參數(shù)的變化是由于材料的老化,而材料老化是由于材料疲勞造成的。 1.簡(jiǎn)介: 到目前為止測(cè)試車輪制造過(guò)程中通過(guò)x射線(RT),超聲波(UT),渦流(ET)和磁(MT)。洛氏、布氏硬度測(cè)試也是非常重要的。在鐵路車輛操作的基本方法診斷車輪超聲和渦流的方法。然而,即便是這種復(fù)雜的檢驗(yàn)流程的使用確保轉(zhuǎn)向架的完整可靠性和底盤和車輪組關(guān)節(jié),作為鐵路的記錄在分析已知的情況下失敗。本文給出的方法要求鐵路輪對(duì)的進(jìn)一步診斷。該方法測(cè)試PKP車輛維護(hù)植物。提出測(cè)試是基于鋼的鐵磁特性以及magneto-mechanical效應(yīng)和磁過(guò)程發(fā)

3、生在材料由于疲勞和引起的退化。這個(gè)新的診斷是一個(gè)獨(dú)特的有價(jià)值的補(bǔ)充的檢驗(yàn),特別是車輪的滾動(dòng)表面測(cè)試。額外的測(cè)試基于測(cè)量的切向分量在滾動(dòng)表面磁場(chǎng)強(qiáng)度檢測(cè)有害內(nèi)應(yīng)力及其發(fā)展隨著時(shí)間的推移以及材料的物理參數(shù)的變化由于操作不當(dāng)。 2. 制造過(guò)程中的缺陷檢測(cè) 控制輪集,車輪中心、實(shí)心輪子和輪胎的復(fù)雜過(guò)程,非常有限的概率失敗的組件使用。不同的診斷方法通常應(yīng)用[1]。如Tab.1表示。 制造過(guò)程的車輪組成分測(cè)試 檢測(cè)元素 檢測(cè)方法 射線 硬度測(cè)試 幾何測(cè)量 超聲檢測(cè) 磁檢測(cè) 渦流檢測(cè) 輪胎 X X X X X 車輪中心 X X X X X 實(shí)

4、心輪 X X X X X 車輪組 X X X X X 這些方法導(dǎo)致消除塊材料不連續(xù)(缺陷),微觀結(jié)構(gòu)變化和由輪或輪中心材料硬度的變化而引起的內(nèi)部應(yīng)力。UT和RT可以用來(lái)檢測(cè)散裝材料,而磁檢測(cè)則用來(lái)檢測(cè)材料的表層和次表層。 3.車輪組在役檢測(cè) 對(duì)于高速列車的輪組在役檢測(cè),主要是集中在循環(huán)檢查,當(dāng)滾動(dòng)表面的幾何已經(jīng)被評(píng)估過(guò)的時(shí)候。滾動(dòng)表面的磨損情況表明,了車輪和軌道的相互作用。在檢查或維修的期間,磁檢測(cè)和超聲檢測(cè)大多用于車輪組檢測(cè)(車輪組保留或拆除)——Tab.2。 車輪組成分的在役檢測(cè) 待檢測(cè)元素 檢測(cè)方法 射線檢測(cè) 硬度測(cè)試 幾何測(cè)

5、量 超聲檢測(cè) 磁檢測(cè) 渦流檢測(cè) 車輪 X X X 車輪組 X X X 超聲波(UT)可以穿透車輪輪胎并且檢測(cè)深度范圍為10毫米甚至更深層次,而渦流測(cè)試(EC)可以覆蓋表面開始向下10毫米的厚度層。選擇適當(dāng)?shù)臏u電流探針頻率檢測(cè)到材料的不連續(xù)而非結(jié)構(gòu)性變化。在選擇的頻率范圍內(nèi)這種變化并不是“可見”。 4在役疲勞檢測(cè) 當(dāng)車輪組在使用時(shí),滾動(dòng)面上層容易出現(xiàn)變化。這些都是結(jié)構(gòu)變化以及磁性和力學(xué)參數(shù)的變化。這些可以表明在使用過(guò)程中在輪組的滾動(dòng)表面積累的疲勞應(yīng)力。常見的診斷程序?qū)Σ牧辖Y(jié)構(gòu)不敏感。車輪材料進(jìn)行調(diào)查的

6、幫助下BEMI(巴克豪森噪聲和渦流顯微鏡)的弗勞恩霍夫研究所(Saabrucken,德國(guó))。用頻率大于1,5 MHz的渦流檢測(cè)模塊(3、4)(圖2)檢測(cè)接觸載荷引起的材料結(jié)構(gòu)的變化(圖1)。 表一,輪胎材料結(jié)構(gòu)樣品PA和PB 表二本pA和pB 以及振幅軌跡曲線在不同的操作頻率下的BEMI渦流圖像樣 5. 以漏磁場(chǎng)作為診斷媒介的檢測(cè) 曲面表面的磁漏磁場(chǎng)測(cè)量是按照材料的反映了不同機(jī)械材料的條件的磁導(dǎo)率來(lái)進(jìn)行的。這可能也就解釋了顯示初始磁化曲線的變化:材料樣本取自一個(gè)新的車輪(已經(jīng)聚集在方向盤前)和材料樣品接觸影響加載在?阿姆斯勒試驗(yàn)臺(tái)(Fig.3a)。硬材料樣本來(lái)自一組車輪在方

7、向盤上(Fig.3b) 圖2.材料的磁參數(shù)的變化進(jìn)行變形和硬化(a)新鮮和退化的材料(b)+ 圖3.材料的磁參數(shù)的變化進(jìn)行變形和硬化(a)新鮮和退化的材料(b)+ 在這兩種情況下矯頑力Hc的增加和材料磁導(dǎo)率的減少是可觀察的[5]??梢詸z測(cè)可塑體沿著滾動(dòng)表面的變化,內(nèi)部壓力的影響[5]以及相變材料由于材料的磁參數(shù)和磁化強(qiáng)度的變化而引起的變化是可以測(cè)量的。為了達(dá)到這個(gè)結(jié)果,測(cè)量車輪的滾動(dòng)表面在外部磁場(chǎng)(例如地球磁場(chǎng))的磁場(chǎng)強(qiáng)度是必要的(Ht)。然而,重復(fù)測(cè)量只是確保當(dāng)?shù)嘏c標(biāo)準(zhǔn)磁場(chǎng)磁軛磁化和探針(校準(zhǔn))檢測(cè)磁化強(qiáng)度的變化,如圖4所示。 材料的磁性參數(shù)的變化的檢測(cè)擴(kuò)展了已知

8、的輪軸檢測(cè)方法。目前在鐵路工程部門,實(shí)驗(yàn)室和鐵路維修和保養(yǎng)工作都在進(jìn)行研究。一些博士論文也提到了這種研究。圖5顯示:測(cè)試的數(shù)值模擬,b)測(cè)試平臺(tái),c)新車輪磁漏磁場(chǎng)測(cè)量的結(jié)果,和d)的磁漏磁場(chǎng)測(cè)量結(jié)果輪表面受損(物質(zhì)結(jié)構(gòu)的變化)。在磁測(cè)量過(guò)程中的車輪組的附加信息提高了診斷的可靠性,特別是在輪軸操作。這反過(guò)來(lái)增加了鐵路運(yùn)輸安全。 6.結(jié)論 在輪對(duì)診斷中引入附加的磁性測(cè)試為材料的不連續(xù)以及結(jié)構(gòu)性變化(同質(zhì)性)檢測(cè)提供了附加的信息。在確保適當(dāng)?shù)母咚倭熊嚨陌踩院筒僮髦校@是必要的。表3列出了能提高診斷的可靠性的新的測(cè)試方法, 檢測(cè)元素 檢測(cè)方法 幾何測(cè)量 超聲檢測(cè) 磁檢

9、測(cè) 渦流檢測(cè) 車輪 X X X X 車輪組 X X X X 提出的可靠性檢驗(yàn)應(yīng)該被鐵路安全當(dāng)局驗(yàn)證。擴(kuò)大現(xiàn)有的測(cè)試平臺(tái)通過(guò)添加一些測(cè)試探頭,并沒有顯著增加質(zhì)量成本。 SUPPLEMENTARY MAGNETIC TESTS FOR RAILWAY WHEEL SETS Summary: During manufacturing process the wheel set is subjected to many different flaw detection methods; however, these methods are

10、 not sufficient while the wheel set is in service. The paper presents an example of monitoring of magnetic parameters changes of wheel set rolling surface (changes result from material degradation due to material fatigue). 1. INTRODUCTION So far testing the wheels during the manufacturing process

11、has been done by X-ray (RT), ultrasound (UT), eddy currents (ET) and magnetic (MT) . Rockwell or Brinell hardness tests are also very important. During rail vehicle operation the basic methods of diagnosing the wheels are ultrasound and eddy current methods. However, even the uses of such sophistic

12、ated inspection processes do not ensure full reliability of the bogie and undercarriage and the wheel set in articular, as documented in analysis of known cases of railway failures. The method presented in the paper asks for a further step in the railway wheel sets diagnostics. This method is teste

13、d in the PKP rolling stock maintenance plants. Proposed tests are based on the ferromagnetic properties of the steels as well as on magneto-mechanical effects and magnetic processes occurring in the material and caused by degradation due to fatigue. This new diagnostics is a distinct valuable supple

14、ment of the wheel inspection and especially of the wheel rolling surface tests. Additional tests based on the measurement of the tangential component of the magnetic field intensity at the rolling surface detect harmful internal stresses and their development with time as well as change in the physi

15、cal parameters of the material due to improper operation. 2. WHEEL SET DIAGNOSTICS DURING MANUFACTURING PROCESS The complex process of controlling wheel sets, wheel centers, monobloc wheels and wheel tires has tremendously limited the probability of failure of the used components. Different diagno

16、stic methods are usually applied [1]. They are indicated in Tab.1. Wheel set components testing during manufacturing process These methods result in eliminating pieces with material discontinuities (flaws), microstructure changes and internal stresses defined by change in wheel or wheel centre

17、 material hardness. UT and RT allow to inspect the bulk material, while by MT a check of the surface and subsurface layers is only performed. 3. WHEEL SET OPERATIONAL DIAGNOSTICS Wheel set operational diagnostics (for high speed trains) is mostly focused on cyclic inspections,when the rolling surf

18、ace geometry is assessed. Rolling surface wear shows how wheel and track interact. During inspection or repair cycles ET and UT are mostly used for wheel set testing (wheel sets either remain in place or are dismantled) – Tab.2. Ultrasonic waves (UT) penetrate the wheel tire material and inspect

19、a depth range of 10 mm and deeper, while eddy currents tests (EC) can cover the 10 mm thick layer beginning at the surface. Eddy current probe frequencies are selected so that the tests will detect any material discontinuity rather than structural changes. Such changes are not “visible” in the frequ

20、ency range under consideration. 4. FATIGUE PROCESSES DETECTION When the wheel set is in operation, changes emerge in the rolling surface upper layer. These are structural changes as well as magnetic and mechanical parameter changes. These can indicate the fatigue processes which accumulate in the

21、wheel set’s rolling surface. The common diagnostics procedures are not sensitive to the material structure. The wheel set materials were investigated with the help of BEMI (Barkhausen Noise and Eddy Current Microscope) in the Fraunhofer Institute (Saabrücken, Germany). Detection of contact load ind

22、uced changes in the material structure (Fig.1)were detected by the implemented eddy current module for frequencies greater than 1,5 MHz [3,4](Fig.2). 5. MAGNETIC LEAKAGE FIELD USED AS A DIAGNOSTIC MEDIUM The magnetic leakage field measured at the rolling surface varies in accordance

23、with material’s magnetic permeability, which in turn reflects the mechanical material’s condition. This may be explained by example showing changes in initial magnetisation curves:Material sample taken from a new wheel tire (before it has been assembled at the wheel) and material sample subjected to

24、 contact oads at AMSLER test rig (Fig.3a).Hardened material sample taken from a wheel tire set on the wheel (Fig.3b) In both cases also a significant increase in the magnetic coercion Hc and a decrease in material’s magnetic permeability are observed [5]. It is possible to detect changes in plastic

25、 strains along the rolling surface, impact of internal strains [5] as well as the phase changes of the material due to changes in material’s magnetic parameters and magnetisation. In order to attain this result it is sufficient to measure magnetic field intensity (Ht) only along the wheel’s rolling

26、 surface in the external magnetic field (e.g. Earth’s magnetic field). However, a good measurement repeatability is only ensured by a local yoke magnetisation and with standard field probes (calibration), detecting magnetisation changes as shown in Fig.4. Detection of changes in material’s magnet

27、ic parameters extends the range of known wheel set testing methods. Research is currently carried out in the Railway Engineering Department on a laboratory scale and in railway repair and maintenance works. Some investigation is performed also within a Ph.D. thesis. Fig.5 shows: a) the numerical si

28、mulation of the test, b) the test rig, c) the results of the magnetic leakage field measurements for a new wheel, and d) the results of the magnetic leakage field measurements for a wheel with a damaged surface (change in material structure). Additional information on the wheel set condition orig

29、inating from magnetic measurements increases the diagnostic reliability, in particular during wheel set operation. This in turn increases rail transport safety. 6. CONCLUSIONS Introducing additional magnetic tests to operational wheel set diagnostics provides additional information on material dis

30、continuity as well as on structural changes (homogeneity). This is essential in order to ensure proper safety and operation of high speed trains. Table 3 sets out new testing methodology which will increase diagnostic reliability The reliability of the proposed inspection should be validated by railway safety authorities.Expanding existing test rigs by adding some test probes does not significantly increase the quality costs。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!