【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【JA系列】為店主整理分類的代號,與課題內(nèi)容無關,請忽視
畢業(yè)設計文獻綜述
題目: 塑料模具的發(fā)展現(xiàn)狀與前景
系 別: 機械工程系
專 業(yè):機械設計制造及自動化專業(yè)
年級班級: 2008級(專升本)班
姓 名: 許清香
學 號: 0808075102
指導教師: 羅寧
職 稱: 講師
2010年 3 月12日
塑料模具的發(fā)展現(xiàn)狀與前景
學生姓名:許清香
指導教師:羅寧
1、我國塑料模具工業(yè)的現(xiàn)狀
中國經(jīng)濟的高速發(fā)展對塑料模具工業(yè)提出了越來越高的要求,也為其發(fā)展提供了巨大的動力。由于近幾年市場需求的強大拉動,中國模具工業(yè)高速發(fā)展。中國模具產(chǎn)量位居世界第三,一直以每年15%左右的增長速度快速發(fā)展[1],但與發(fā)達國家相比,我國模具工業(yè)存在的問題是低檔模具供過于求,中高檔模具自配率只有總量的50%,供不應求。我國模具工業(yè)無論在技術上還是在管理上,與國外都存在較大的差距。特別在大型、精密、復雜、長壽命模具技術上,差距尤為明顯。中國每年需要大量進口此類模具,在模具產(chǎn)品結構上。中低檔模具相對過剩,市場競爭加劇致使價格偏低,降低了 許多模具企業(yè)的效益。而中高檔模具生產(chǎn)能力不足,開發(fā)能力較弱,技術人才嚴重不足,科研開發(fā)和技術攻關投入少[2]。
近年,模具行業(yè)結構調(diào)整和體制改革步伐加大,主要表現(xiàn)在以下幾個方面:大型、精密、復雜、長壽命、中高檔模具及模具標準件發(fā)展速度高于一般模具產(chǎn)品;塑料模比例增大;專業(yè)模具廠數(shù)量及其生產(chǎn)能力增加;“三資”及私營企業(yè)發(fā)展迅速;股份制改造步伐加快等。從地區(qū)分布來看,以珠江三角洲和長江三角洲為中心的東南沿海地區(qū)發(fā)展和浙江,江蘇、上海、安徽、和山東等地近幾年也有較大發(fā)展。
從未來發(fā)展機會來看,我國經(jīng)濟仍處于高速發(fā)展期,國際上經(jīng)濟全球化發(fā)展趨勢日趨明顯,這為我國模具工業(yè)高速發(fā)展提供了良好的條件和機遇。一方面是國內(nèi)模具市場將繼續(xù)高速發(fā)展,另一方面是國際上將模具制造逐漸向我國轉(zhuǎn)移的趨勢和跨國集團到我國進行模具采購的趨向也十分明顯。因此,展望未來,國際、國內(nèi)的模具市場總體發(fā)展趨勢前景美好,預計我國模具工業(yè)就愛你個在良好的市場環(huán)境下繼續(xù)得到高速發(fā)展。行業(yè)結構調(diào)整和產(chǎn)業(yè)升級過程中機會與風險并存,如何抓住機會、規(guī)避風險是模具企業(yè)需要特別關注的[3]。
2、塑料模具的發(fā)展水平與市場趨勢
近年來,中國塑料模具制造水平已有較大提高。大型塑料模具已能生產(chǎn)單套重量達到50t以上的注塑模,精密塑料模具的精度已達到2μm,制件精度很高的小模數(shù)齒輪模具及達到高光學要求的車燈模具等也已能生產(chǎn),多腔塑料模具已能生產(chǎn)一模7800腔的塑封模,高速模具方面已能生產(chǎn)擠出速度達6m/min以上的高速塑料異型材擠出模具及主型材雙腔共擠、雙色共擠、軟硬共擠、后共擠、再生料共擠出和低發(fā)泡鋼塑共擠等各種模具。
在生產(chǎn)手段上,模具企業(yè)設備數(shù)控化率已有較大提高,CAD/CAE/CAM技術的應用面已大為擴展,高速加工及RP/RT等先進技術的采用已越來越多,模具標準件使用覆蓋率及模具商品化率都有較大幅度的提高,熱流道模具的比例也有較大提高。另外,三資企業(yè)的蓬勃發(fā)展進一步促進了塑料模具設計制造水平及企業(yè)管理水平的提高,有些企業(yè)已實現(xiàn)信息化管理和全數(shù)字化無圖制造。
經(jīng)過近幾年的發(fā)展,塑料模具的開發(fā)、創(chuàng)新和企業(yè)管理等方面已顯示出一些新的發(fā)展趨勢[4]:
(1)在模具的質(zhì)量、交貨周期、價格、服務四要素中,已有越來越多的用戶將交貨周期放在首位。要求模具公司盡快交貨,這已成為一種趨勢。企業(yè)千方百計提高自己的適應能力、提高技術水準、提高裝備水平、提高管理水平及提高效率等都是縮短模具生產(chǎn)周期的有效手段。
(2)大力提高開發(fā)能力,將開發(fā)工作盡量往前推,直至介入到模具用戶的產(chǎn)品開發(fā)中去,甚至在尚無明確用戶對象之前進行開發(fā),變被動為主動。目前,電視機和顯示器外殼、空調(diào)器外殼、摩托車塑件等已采用這種方法,手機和電話機模具開發(fā)也已開始嘗試。這種做法打破了長期以來模具廠只能等有了合同,才能根據(jù)用戶要求進行模具設計的被動局面。
(3)隨著模具企業(yè)設計和加工水平的提高,模具的制造正在從過去主要依靠鉗工的技藝轉(zhuǎn)變?yōu)橹饕揽考夹g。這不僅是生產(chǎn)手段的轉(zhuǎn)變,也是生產(chǎn)方式的轉(zhuǎn)變和觀念的上升。這一趨勢使得模具的標準化程度不斷提高,模具精度越來越高,生產(chǎn)周期越來越短,鉗工比例越來越低,最終促進了模具工業(yè)整體水平不斷提高。中國模具行業(yè)目前已有10多個國家級高新技術企業(yè),約200個省市級高新技術企業(yè)[5]。與此趨勢相適應,生產(chǎn)模具的主要骨干力量從技藝型人才逐漸轉(zhuǎn)變?yōu)榧夹g型人才是必然要求。當然,目前及相當長一段時間內(nèi),技藝型人才仍十分重要,因為模具畢竟難以完全擺脫對技藝的依靠。
(4)模具企業(yè)及其模具生產(chǎn)正在向信息化迅速發(fā)展。在信息社會中,作為一個高水平的現(xiàn)代模具企業(yè),單單只是CAD/CAM的應用已遠遠不夠。目前許多企業(yè)已經(jīng)采用了CAE、CAT、PDM、CAPP、KBE、KBS、RE、CIMS、ERP等技術及其它先進制造技術和虛擬網(wǎng)絡技術等,這些都是信息化的表現(xiàn)。向信息化方向發(fā)展這一趨向已成為行業(yè)共識。
(5)隨著人類社會的不斷進步,模具必然會向更廣泛的領域和更高水平發(fā)展?,F(xiàn)在,能把握機遇、開拓市場,不斷發(fā)現(xiàn)新的增長點的模具企業(yè)和能生產(chǎn)高技術含量模具企業(yè)的業(yè)務很是紅火,利潤水平和職工收入都很好。因此,模具企業(yè)應把握這個趨向,不斷提高綜合素質(zhì)和國際競爭力。
(6)發(fā)達工業(yè)國家的模具正加速向中國轉(zhuǎn)移,其表現(xiàn)方式為:一是遷廠,二是投資,三是采購。中國的模具企業(yè)應抓住機遇,借用并學習國外先進技術,加快自己的發(fā)展步伐。
3、我國塑料模具存在的主要問題
中國塑料模具行業(yè)和國外先進水平相比,主要存在以下問題。
(1)發(fā)展不平衡,產(chǎn)品總體水平較低。雖然個別企業(yè)的產(chǎn)品已達到或接近國際先進水平,但總體來看,模具的精度、型腔表面的粗糙度、生產(chǎn)周期、壽命等指標與國外先進水平相比尚有較大差距。包括生產(chǎn)方式和企業(yè)管理在內(nèi)的總體水平與國外工業(yè)發(fā)達國家相比尚有10年以上的差距。
(2)工藝裝備落后,組織協(xié)調(diào)能力差。雖然部分企業(yè)經(jīng)過近幾年的技術改造,工藝裝備水平已經(jīng)比較先進,有些三資企業(yè)的裝備水平也并不落后于國外,但大部分企業(yè)的工藝裝備仍比較落后。更主要的是,企業(yè)組織協(xié)調(diào)能力差,難以整合或調(diào)動社會資源為我所用,從而就難以承接比較大的項目。
(3)大多數(shù)企業(yè)開發(fā)能力弱,創(chuàng)新能力明顯不足。一方面是技術人員比例低、水平不夠高,另一方面是科研開發(fā)投入少;更重要的是觀念落后,對創(chuàng)新和開發(fā)不夠重視。模具企業(yè)不但要重視模具的開發(fā),同時也要重視產(chǎn)品的創(chuàng)新。
(4)供需矛盾短期難以緩解。近幾年,國產(chǎn)塑料模具國內(nèi)市場滿足率一直不足74%,其中大型、精密、長壽命模具滿足率更低,估計不足60%。同時,工業(yè)發(fā)達國家的模具正在加速向中國轉(zhuǎn)移,國際采購越來越多,國際市場前景看好。市場需求旺盛,生產(chǎn)發(fā)展一時還難以跟上,供不應求的局面還將持續(xù)一段時間。
(5)體制和人才問題的解決尚需時日。在社會主義市場經(jīng)濟中,競爭性行業(yè),特別是像模具這樣依賴于特殊用戶、需單件生產(chǎn)的行業(yè),國有和集體所有制原來的體制和經(jīng)營機制已顯得越來越不適應。人才的數(shù)量和素質(zhì)也跟不上行業(yè)的快速發(fā)展。
5、現(xiàn)階段模具發(fā)展展望
在信息化帶動工業(yè)化發(fā)展的今天,我們既要看到成績,又要重視落后,要抓住機遇,采取措施,在經(jīng)濟全球化趨向日漸加速的情況下,盡快提高塑料模具的水平,融入到國際市場中去,以促進中國模具行業(yè)的快速發(fā)展,有兩方面應予以重視[6]:
一是政府相關政策對促進模具工業(yè)的發(fā)展起著非常重要的作用。從國際上看,各國模具工業(yè)在發(fā)展初期都得到了政府的大力扶持。就中國實際情況看,應降低國內(nèi)不能生產(chǎn)的進口精密模具生產(chǎn)設備的關稅、執(zhí)行好國家對部分專業(yè)模具廠的優(yōu)惠政策等,通過政策引導作用可加快行業(yè)的發(fā)展和進步。
二是隨著市場的發(fā)展,塑料新材料及多樣化成型方式今后必然會不斷發(fā)展,因此對模具的要求也越來越高。為了滿足市場需要,未來的塑料模具無論是品種、結構、性能還是加工都必將有較快發(fā)展,而且這種發(fā)展必須跟上時代步伐。展望未來,下列幾方面發(fā)展趨勢預計會在行業(yè)中得到較快應用和推廣。
(1)超大型、超精密、長壽命、高效模具將得到發(fā)展。
(2)多種材質(zhì)、多種顏色、多層多腔、多種成型方法一體化的模具將得到發(fā)展。
(3)為各種快速經(jīng)濟模具,特別是與快速成型技術相結合的RP/RT技術將得到快速發(fā)展。
(4)模具設計、加工及各種管理將向數(shù)字化、信息化方向發(fā)展CAD/CAE/CAM/CAPP及PDM/PLM/ERP等將向智慧化、集成化和網(wǎng)絡化方向發(fā)展。
(5)更高速、更高精度、更加智慧化的各種模具加工設備將進一步得到發(fā)展和推廣應用。
(6)更高性能及滿足特殊用途的模具新材料將會不斷發(fā)展,隨之將產(chǎn)生一些特殊的和更為先進的加工方法。
(7)各種模具型腔表面處理技術,如涂覆、修補、研磨和拋光等新工藝也會不斷得到發(fā)展。
(8)逆向工程、并行工程、復合加工乃至虛擬技術將進一步得到發(fā)展。
(9)熱流道技術將會迅速發(fā)展,氣輔和其它注射成型工藝及模具也將會有所發(fā)展。
(10)模具標準化程度將不斷提高。
(11)在可持續(xù)發(fā)展和綠色產(chǎn)品被日益重視的今天,“綠色模具”的概念已逐漸被提到議事日程上來。即,今后的模具,從結構設計、原材料選用、制造工藝及模具修復和報廢,以及模具的回收利用等方面,都將越來越考慮其節(jié)約資源、重復使用、利于環(huán)保,以及可持續(xù)發(fā)展這一趨向。
現(xiàn)階段,在科學發(fā)展觀指導下,國內(nèi)塑料模具企業(yè)將進一步深化改革,下功夫搞好科技進步與創(chuàng)新,堅持走新型工業(yè)化道路,將速度效益型的增長模式逐步轉(zhuǎn)變到質(zhì)量和水平效益型的軌道上來,模具工業(yè)必將得到又好又快的發(fā)展。
參考文獻
[10] 洪慎章.現(xiàn)代模具工業(yè)的發(fā)展趨勢及企業(yè)特征[J].航空制造技術, 2003,(06)
[11] 薛啓翔.注塑模具實用技術. 北京:機械工業(yè)出版社,2006,1
[12] 趙昌盛.實用模具材料應用手冊[M]. 北京:機械工業(yè)出版社,2005,6
[13] 李和平、吳霞.現(xiàn)代模具行業(yè)現(xiàn)狀與發(fā)展趨勢綜述[J]. 2005,1
[14] 余銀柱.注塑工藝與模具設計.北京:北京大學出版社,2005,11
[15] 徐政坤.塑料模具設計與制造. 北京:化學工業(yè)出版社,2005,7
[16] 張六玲. 國內(nèi)外模具工業(yè)的基本現(xiàn)狀與市場預測[J]. 模具制造 , 2002,(01)
8
附件5
畢業(yè)設計(論文)開題報告
填表日期: 2010 年 03 月 12 日
系別(蓋章):機械工程系
學生姓名:許清香
學號:0808075102
年級專業(yè):08機械設計制造及其自動化
指導教師姓名:羅寧
職稱:講師
題目
沖水手柄注塑模具設計
研究目標與內(nèi)容(包括基本內(nèi)容、方案論證、設計思路等)
一、目標:
1.在分析沖水手柄零件實體的基礎上,綜合運用塑料模具設計、機械制圖、公差與互換性與測量技術、機械原理及零件、模具材料及熱處理、模具制造工藝等先修課程的知識,分析與解決沖水手柄的模具設計問題,進一步鞏固,加深,拓寬所學知識。對其進行模具結構與制造工藝設計。
2.通過計算,CAD/PROE繪圖和運用技術標準、規(guī)范、設計手冊等相關設計資料,進行沖水手柄的模具設計并最終完成沖水手柄的零件圖,模具裝配圖,模具零件圖及相關設計說明書。
二、設計內(nèi)容
1.基本內(nèi)容
1) 設計準備:閱讀設計任務書,明確沖水手柄的模具設計任務,準備設計資料及繪圖工具。
2) 沖水手柄模具總體結構的設計:主要包括塑件在模具中的成型位置,分型面和型腔數(shù)量的確定,澆注系統(tǒng)和澆口的設計,成型零件的設計,脫模推出機構的設計,合模導向機構的設計,排氣系統(tǒng)和溫度調(diào)節(jié)系統(tǒng)的設計和模架的選擇、模具加工工藝及模具成本核算等。
3) 裝配圖的設計:初繪模具裝配草圖,各部分的結構設計,協(xié)調(diào)好各零部件之間的裝配關系,完成裝配工作圖。
4) 零件工作圖的設計:主要是繪制成型零件如(動、定模板及動定仁及型芯)繪制。
5) 編寫設計計算說明書:主要是整理和編寫沖水手柄模具設計說明書。
6) 設計總結及答辯:進行畢業(yè)設計總結,完成答辯準備工作。
2.設計思路
因所給沖水手柄零件的形狀比較簡單,無側(cè)向凹、凸及側(cè)孔和異型孔等且要求大批量生產(chǎn)并設計成一模多腔,故本設計采用的是單分型面注射模結構,澆注系統(tǒng)設計成非平衡式、澆口設計成矩形側(cè)澆口并對澆口尺寸進行調(diào)節(jié)以實現(xiàn)澆注系統(tǒng)平衡。塑件的推出采用推桿推出機構實現(xiàn),而推出機構的導向及復位則分別選用復位桿和彈簧來實現(xiàn)。
3.方案論證
通過實驗及塑件成型工藝性分析確定沖水手柄材料為ABS,其外形采用電鍍。因塑件的尺寸較小且精度要求不高,外形結構簡單,又是大批量生產(chǎn),通過計算確定采用一模8腔非平衡式布置,選用兩板式單分型面注射模架。
畢業(yè)
論文
(設計)
工作
安排
計劃
1.查閱資料、撰寫文獻綜述、撰寫開題報告,完成外文文獻翻譯。
2.進行畢業(yè)設計:設計方案論證與確定,完成建模、有關計算、設備選擇,完成設計說明書草稿。
3.畢業(yè)設計中期檢查。
4.完成模具裝配圖繪制,完成模具零件圖的繪制,并進一步修正裝配圖,完成說明書正稿的編寫。
5.畢業(yè)設計末期檢查。
畢業(yè)設計答辯及修改定稿
學生簽字:
2010年 03 月 12 日
指導教師簽字:
年 月 日
系部
工作
領導
小組
審批
負責人簽字蓋章:
年 月 日
注:表格不夠填寫可另續(xù)頁。
Integrated CAD/CAE/CAM system for injection moulding
by Yuan Zhongshuang, Li Dequn, Chen Xing, Ye Xiangao,Gao Xianke and Xiao Jingrong
Huazhong University of Science & Technology, China
An integrated CAD/CAE/CAM system, HSC-1.1, is described in this article. At the CAD/CAE stage the drawings of injection moulded parts can be transformed into the drawings of the mould parts interactively and, according to the user's needs, the mechanical check, runner balance analysis, flow simulation and cooling simulation can be carried out. NC tapes for wire cutting or milling machine tools can be generated at the CAM stage. The practice shows that the system is a useful tool for mould designers and manufacturers.
Introduction
Injection moulding is one of the most important polymer processing operations in industry today. It is superior for mass production of complex parts to high precision at low cost. For a long time, experience, intuition and trial and error have been key factors in mould designing, mould manufacturing and moulding operation. These approaches have become increasingly inefficient and costly, especially when applied to the moulding of large parts and parts of high precision or to the processing of new kinds of polymers. Now some of these problems are being solved successfully by combining recent advances in CAD, CAE and CAM technology.
In recent years more and more CAD/CAE/CAM systems for injection moulding have been developed and delivered in Western industrialized countries, such as C-MOULD 3.1 of AC Technology Inc. in the USA, CAD-MOULD of IKV in Germany, McKAM-ll of McCill University in Canada, and MoldFlow in Australia. With the help of these software packages the productivity and quality of injection moulded parts can be improved and the start-up time can be shortened.
CAD/CAE/CAM technology for injection moulding has been developed quickly in China since
1980. As a pioneer in this field in our country, we have studied and developed CAD/CAE/CAM technology of injection moulding for many years. Through five years' development and practical verification, an integrated CAD/CAE/CAM system for injection moulding, HSC-1.1, has been developed and put into use successfully in many factories.
System description
HSC-1.1 is developed on personal computers such as the PC386 and PC486. The desirable internal storage is 4 MB or more, and the external storage is more than 100 MB.
Fig. 1 shows the software requirements of HSC-1.1. The system is developed and run under the
environment of Operating System II (OS/2) or MS-DOS. In the system AutoCAD-10.0 is used only as a graphic editor and drawing software. Standard Fortran 77 and AutoLisp are used for programming. Except for a few of programs for graphic driver, all the software in the system is independent of computers, which ensures good portability of the system..
As shown in Fig. 2, HSC-1.1 integrates nine modules with their function design based on the requirements of users. All modules in the system are supervised by a main control program named control panel' or 'control menu'. Users can invoke any module by ordering the menu displayed on the screen by the control panel. The data exchange from one module to another is implemented automatically in the form of data files. Fig. 3 shows the data flowchart of HSC-1.1.
Function of CAD modules
The task of CAD modules is to transform the drawings of injection moulded parts into the drawings of mould parts efficiently and provide necessary data for simulation and NC modules. Due to complex cavities, a surface modelling program has been eveloped for graphic input. Planes, regular surfaces and bi-cubic surfaces can be created easily. The co-ordinates of points on surfaces
can be calculated by the programusing dimensions of the part drawing and the co-ordinates of the points input before. While the part drawing is being input one surface after another, the dimensions of the part will be transformed into the dimensions of the cavity and core through interaction. The data for the cavity and core are recorded for both mould design and simulation.
A database for standard mould sets has been set up which contains ten kinds of standard mould sets issued by the Electrical Ministry of the People's Republic of China. Each kind of mould set contains 13 series. Hence there are 31150 combinations of mould sets altogether in the database. Once the cavity layout is determined, all the standard mould parts can be selected automatically and dimensioned through interaction.
The system provides a group of functions for users to design the runner system, edit construction of cavity and core and arrange ejection pins and cooling lines. Finally all the mould part drawings including moving mould assembly, stationary mould assembly and general mould assembly drawing can be produced. Fig. 4 shows a mould assembly drawing of a switch socket made in the Shanghai No. 9 Radio Factory for colour TV sets.
Function of CAE modules
CAE modules include the interface between CAD and CAE modules, mechanical check for mould plates, runner balance analysis, flow simulation and cooling simulation. With the help of these CAE modules the mould construction design can be improved and possible defects in injection moulded parts such as degradation, short shots, and improper location of weld lines can be addressed before mould making.
The interface between CAD and CAE modules reads the geometric model of cavity and delivery system which is produced at the previous CAD stage and generates FEM mesh automatically. Using the interface, users can also select polymer, coolant, mould material and set process conditions such as injection temperature, injection time, coolant temperature etc. The interface reads the property data of the materials from the data bank and writes the mesh configuration, material properties and process conditions into data files which are the inputs for the CAE modules described below.
Currently the system uses a 2D finite-element method (FEM) to analyse the mould plate's strength and rigidity for a typical mould cross-section. An analysis program based on a 3D FEM is under development.
In order to guarantee the same qualities of the injection moulded parts produced in multi-cavities, each cavity must be filled simultaneously at the same pressure and temperature. This requires the runner system to be balanced. In HSC-1.1 the balance can be reached by correcting the dimensions of runners and gates designed by users at the preliminary design stage which are most probably not balanced.
The flow simulation program is one of the most basic and useful analyses in the system. The
governing equations for flow in cavity can be obtained by extending the classical Hele-Shaw flow to an inelastic, non-Newtonian fluid under non-isothermal conditions:
i-(rti) + J- (bv) =0
dX df/
+u+ v
dt dx By
Bz2
where P, Fare the pressure and temperature of melt, respectively; r|, y represent viscosity and shear rate; '—' denotes an average over z, the gap wise co-ordinate; p, Cp and K are density, specific heat and heat conductivity of the melt, respectively; and b is the half gap thickness. Because the thickness dimension of an injection moulded part is often much smaller than the other two dimensions, a powerful numerical scheme, which is the hybrid of the finite element and finite difference methods (FEM/FDM), is adopted in the solution. In the implementation of the scheme, the planar co-ordinates are described in terms of finite elements and the gapwise and time derivatives are expressed in terms of finite differences. A control volume approach is adopted to derive the finite-element formulation and track the melt front movement. By use of flow simulation, users can acquire information such as pressure, velocity and temperature distributions, total pressure drop, clamp force etc., which is very helpful in designing the deliver helpful in designing the delivery system and optimising the process conditions. Users can also animate the filling of the cavity and obtain an optimum flow pattern by changing the number and locations of gates.
Cooling simulation includes 3D steady and transient cooling analyses. The 3D steady cooling analysis uses the boundary element method (BEM). Formulas for modelling the cavity surfaces, cooling lines and exterior surfaces have been established and proven to be reliable and effective. Based on the steady cooling simulation, 3D transient cooling simulation has been developed. A novel BEM has been adopted in this module to eliminate numerical body integration. With the help of this module users can calculate heat transfer between cavity and cooling channels, reduce cooling time and predict temperature along mould and injection moulded part surfaces.
All results of CAE modules can be displayed dynamically with contour plots, shaded colour images and various curve plots to aid users in improving their design.
Function of CAM module
The cutter location files can be created based on the geometry of cavity and core which is modelled at the previous CAD stage. NC tapes can then be generated by use of postprocessors for both NC wire cutting machine tools and NC milling machine tools. Currently only the function of NC wire cutting is used in practice. A lot of injection moulds have been designed and manufactured by using the system HSC-1.1 in factories in our country.
Conclusions
HSC-1.1 is an integrated CAD/CAE/CAM system for injection moulding. All programs in the system are independent of computers except a few programs for the graphic driver. It ensures the system's good portability. The modular structure of the system guarantees that each module of the system has good expandability and maintainability. The practice shows that HSC-1.1 is a powerful tool for mould designing and manufacturing. It can assist engineers in cutting mould cost and improving mould quality. HSC-1.1 will find more and more applications in the mould industry.
References
1 WANG, K. K. : Polymer Plastics Technology Engineering, 1980, 1, p.75
2 MENGES, G.: Plastics Engineering, 1983, 8, p.37
3 KAMAL, M. R. etal.: Application of computer aided engineering in injection moulding' (Hanser Publisher, 1987, p.247)
4 AUSTIN, C: 'Application of computer aided engineering in injection moulding (Hanser Publisher, 1987, p. 137)
5 WANG, V. W., Ph.D. thesis, Cornell University, 1985 ?IEE: 1993 The authors are with Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China