中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點(diǎn)題型突破 題型一 簡(jiǎn)單幾何圖形的證明與計(jì)算試題.doc
《中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點(diǎn)題型突破 題型一 簡(jiǎn)單幾何圖形的證明與計(jì)算試題.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點(diǎn)題型突破 題型一 簡(jiǎn)單幾何圖形的證明與計(jì)算試題.doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題二 解答重難點(diǎn)題型突破 題型一 簡(jiǎn)單幾何圖形的證明與計(jì)算 類型一 特殊四邊形的探究 1.(xx開(kāi)封模擬)如圖,在Rt△ABC中,∠BAC=90,∠B=60,以邊AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F. (1)求證:BD是⊙O的切線; (2)若BC=2,E是半圓上一動(dòng)點(diǎn),連接AE、AD、DE. 填空: ①當(dāng)?shù)拈L(zhǎng)度是__________時(shí),四邊形ABDE是菱形; ②當(dāng)?shù)拈L(zhǎng)度是__________時(shí),△ADE是直角三角形. 2.(xx商丘模擬)如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過(guò)點(diǎn)C作⊙O的切線BC,E是BC的中點(diǎn),AB交⊙O于D點(diǎn). (1)直接寫(xiě)出ED和EC的數(shù)量關(guān)系:; (2)DE是⊙O的切線嗎?若是,給出證明;若不是,說(shuō)明理由; (3)填空:當(dāng)BC=__________時(shí),四邊形AOED是平行四邊形,同時(shí)以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是__________. 3.如圖,在菱形ABCD中,∠ABC=60,BC=5 cm,點(diǎn)E從點(diǎn)A出發(fā)沿射線AD以1 cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2 cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s). (1)連接EF,當(dāng)EF經(jīng)過(guò)BD邊的中點(diǎn)G時(shí),求證:△DGE≌△BGF; (2)填空: ①當(dāng)t為_(kāi)_________s時(shí),△ACE的面積是△FCE的面積的2倍; ②當(dāng)t為_(kāi)_________s時(shí),四邊形ACFE是菱形. 4.(xx新鄉(xiāng)模擬)如圖,AC是?ABCD的一條對(duì)角線,過(guò)AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F(xiàn). (1)求證:AE=CF; (2)連接AF,CE. ①當(dāng)EF和AC滿足條件__________時(shí),四邊形AFCE是菱形; ②若AB=1,BC=2,∠B=60,則四邊形AFCE為矩形時(shí),EF的長(zhǎng)是__________. 類型二 幾何問(wèn)題的證明與計(jì)算 1.(xx周口模擬)如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點(diǎn),連接OF并延長(zhǎng)交弧AC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BA的延長(zhǎng)線于點(diǎn)E. (1)求證:AC∥DE; (2)連接CD,若OA=AE=2時(shí),求出四邊形ACDE的面積. 2.(xx湘潭)如圖,在?ABCD中,DE=CE,連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F. (1)求證:△ADE≌△FCE; (2)若AB=2BC,∠F=36.求∠B的度數(shù). 3.(xx山西)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,與過(guò)點(diǎn)C的⊙O的切線交于點(diǎn)D. (1)若AC=4,BC=2,求OE的長(zhǎng). (2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由. 4.(xx杭州)如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連接AG. (1)寫(xiě)出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由; (2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105,求線段BG的長(zhǎng). 題型一 簡(jiǎn)單幾何圖形的證明與計(jì)算 類型一 特殊四邊形的探究 1.(1)證明:連接OD,如解圖, ∵∠BAC=90,點(diǎn)D為BC的中點(diǎn), ∴DB=DA=DC, ∵∠B=60,∴△ABD為等邊三角形, ∴∠DAB=∠ADB=60,∠DAC=∠C=30,而OA=OD, ∴∠ODA=∠OAD=30, ∴∠ODB=60+30=90, ∴OD⊥BC,又∵OD是⊙O的半徑, ∴BD是⊙O的切線; (2)解:①連接OD、OE,∵△ABD為等邊三角形, ∴AB=BD=AD=CD=, 在Rt△ODC中,OD=CD=1, 當(dāng)DE∥AB時(shí),DE⊥AC,∴AD=AE, ∵∠ADE=∠BAD=60, ∴△ADE為等邊三角形, ∴AD=AE=DE,∠ADE=60,∴∠AOE=2∠ADE=120,∴AB=BD=DE=AE, ∴四邊形ABDE為菱形, 此時(shí),的長(zhǎng)度==π, ②當(dāng)∠ADE=90時(shí),AE為直徑,點(diǎn)E與點(diǎn)F重合,此時(shí)的長(zhǎng)度==π, 當(dāng)∠DAE=90時(shí),DE為直徑,∠AOE=2∠ADE=60,此時(shí)的長(zhǎng)度==π, 所以當(dāng)?shù)拈L(zhǎng)度為π或π時(shí),△ADE是直角三角形. 2.解:(1)連接CD,如解圖, ∵AC是⊙O的直徑,∴∠ADC=90, ∵E是BC的中點(diǎn), ∴DE=CE; (2)DE是⊙O的切線.理由如下: 連接OD,如解圖, ∵BC為切線,∴OC⊥BC, ∴∠OCB=90,即∠2+∠4=90, ∵OC=OD,ED=EC,∴∠1=∠2,∠3=∠4, ∴∠1+∠3=∠2+∠4=90,即∠ODE=90,∴OD⊥DE, ∴DE是⊙O的切線; (3)當(dāng)BC=2時(shí), ∵CA=CB=2,∴△ACB為等腰直角三角形,∴∠B=45, ∴△BCD為等腰直角三角形,∴DE⊥BC,DE=BC=1, ∵OA=DE=1,AO∥DE,∴四邊形AOED是平行四邊形; ∵OD=OC=CE=DE=1,∠OCE=90, ∴四邊形OCED為正方形. 3.(1)證明:∵G為BD的中點(diǎn), ∴BG=DG, ∵四邊形ABCD是菱形, ∴AD∥BC, ∴∠EDG=∠FBG,∠GED=∠GFB, ∴△DGE≌△BGF(AAS); (2)解:①分兩種情況考慮:當(dāng)點(diǎn)F在線段BC上時(shí),如解圖①,連接AC,EC,設(shè)菱形ABCD邊BC上的高為h,由題意知S△ACE=AEh,S△FCE=CFh,∵△ACE的面積是△FCE的面積的2倍,∴AEh=2CFh,∴AE=2CF,∵AE=t,CF=5-2t,∴t=2(5-2t),解得t=2;當(dāng)點(diǎn)F在線段BC的延長(zhǎng)線上時(shí),如解圖②,連接AC,EC,AE=t,CF=2t-5,∵△ACE的面積是△FCE的面積的2倍,∴AE=2CF,∴t=2(2t-5),解得t=; ②∵四邊形ABCD為菱形,∴AB=BC,∵∠ABC=60,∴△ABC為等邊三角形,∴AC=AB=5,當(dāng)四邊形ACFE為菱形時(shí),則AE=AC=CF=5,即t=5. 4.(1)證明:∵AD∥BC,∴∠EAO=∠FCO. ∵O是AC的中點(diǎn),∴OA=OC, 在△AOE和△COF中, , ∴△AOE≌△COF(ASA). ∴AE=CF. (2)解:①當(dāng)EF和AC滿足條件EF⊥AC時(shí),四邊形AFCE是菱形; 如解圖所示, ∵AE∥CF,AE=CF, ∴四邊形AFCE是平行四邊形, 又∵EF⊥AC,∴四邊形AFCE是菱形; ②若四邊形AFCE為矩形, 則EF=AC,∠AFB=∠AFC=90, ∵AB=1,BC=2,∠B=60,∴∠BAF=30, ∴BF=AB=, ∴AF=BF=,CF=2-=, ∴AC===, ∴EF=. 類型二 幾何問(wèn)題的證明與計(jì)算 1.證明:(1)∵F為弦AC的中點(diǎn), ∴AF=CF,∴OD⊥AC, ∵DE切⊙O于點(diǎn)D,∴OD⊥DE, ∴AC∥DE; (2)∵AC∥DE,且OA=AE, ∴F為OD的中點(diǎn),即OF=FD, 又∵AF=CF, ∠AFO=∠CFD, ∴△AFO≌△CFD(SAS),∴S△AFO=S△CFD,∴S四邊形ACDE=S△ODE. 在Rt△ODE中,OD=OA=AE=2, ∴OE=4, ∴DE===2, ∴S四邊形ACDE=S△ODE=ODDE=22=2. 2.(1)證明:∵四邊形ABCD是平行四邊形, ∴AD∥BC,AD=BC, ∴∠D=∠ECF, 在△ADE和△FCE中, , ∴△ADE≌△FCE(ASA); (2)解:∵△ADE≌△FCE,∴AD=FC, ∵AD=BC,AB=2BC,∴AB=FB, ∴∠BAF=∠F=36,∴∠B=180-236=108. 3.解:(1)∵AB為⊙O的直徑,∴∠ACB=90, 在Rt△ABC中,由勾股定理得:AB===2, ∴OA=AB=, ∵OD⊥AB, ∴∠AOE=∠ACB=90, 又∵∠A=∠A, ∴△AOE∽△ACB, ∴=,即=, 解得:OE=; (2) ∠CDE=2∠A,理由如下:連接OC,如解圖所示: ∵OA=OC,∴∠1=∠A, ∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90, ∴∠2+∠CDE=90, ∵OD⊥AB,∴∠2+∠3=90,∴∠3=∠CDE, ∵∠3=∠A+∠1=2∠A, ∴∠CDE=2∠A. 4.解:(1)結(jié)論:AG2=GE2+GF2. 理由:如解圖,連接CG. ∵四邊形ABCD是正方形,∴A、C關(guān)于對(duì)角線BD對(duì)稱, ∵點(diǎn)G在BD上,∴GA=GC, ∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F, ∴∠GEC=∠ECF=∠CFG=90, ∴四邊形EGFC是矩形,∴CF=GE, 在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2; (2)如解圖,作AH⊥BG于點(diǎn)H, 由題意得∠AGB=60,∠ABH=45,∴△ABH是等腰直角三角形, ∵AB=1,∴AH=BH=,HG=,∴BG=.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點(diǎn)題型突破 題型一 簡(jiǎn)單幾何圖形的證明與計(jì)算試題 中考 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 解答 難點(diǎn) 題型 突破 簡(jiǎn)單 幾何圖形 證明 計(jì)算 試題
鏈接地址:http://italysoccerbets.com/p-5417086.html