《創(chuàng)新設(shè)計(jì)(江蘇專用)高考數(shù)學(xué)二輪復(fù)習(xí) 上篇 專題整合突破 專題五 解析幾何 第2講 圓錐曲線的基本問題課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《創(chuàng)新設(shè)計(jì)(江蘇專用)高考數(shù)學(xué)二輪復(fù)習(xí) 上篇 專題整合突破 專題五 解析幾何 第2講 圓錐曲線的基本問題課件 文(30頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第2講講圓錐曲線的基本問圓錐曲線的基本問題題高考定位圓錐曲線中的基本問題一般以橢圓、雙曲線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)等作為考查的重點(diǎn),多為填空題.橢圓有關(guān)知識(shí)為B級(jí)要求,雙曲線的有關(guān)知識(shí)為A級(jí)要求.真真 題題 感感 悟悟3.(2015江蘇卷)在平面直角坐標(biāo)系xOy中,P為雙曲線x2y21右支上的一個(gè)動(dòng)點(diǎn).若點(diǎn)P到直線xy10的距離大于c恒成立,則實(shí)數(shù)c的最大值為_.考考 點(diǎn)點(diǎn) 整整 合合1.圓錐曲線的定義(1)橢圓:MF1MF22a(2aF1F2);(2)雙曲線:|MF1MF2|2a(2aF1F2).2.圓錐曲線的標(biāo)準(zhǔn)方程3.圓錐曲線的幾何性質(zhì)4.有關(guān)弦長(zhǎng)問題有關(guān)弦長(zhǎng)問題,應(yīng)注意運(yùn)用弦長(zhǎng)公式
2、及根與系數(shù)的關(guān)系,“設(shè)而不求”;有關(guān)焦點(diǎn)弦長(zhǎng)問題,要重視圓錐曲線定義的運(yùn)用,以簡(jiǎn)化運(yùn)算.探究提高(1)對(duì)于圓錐曲線的定義不僅要熟記,還要深入理解細(xì)節(jié)部分:比如橢圓的定義要求PF1PF2F1F2,雙曲線的定義中要求|PF1PF2|F1F2,拋物線上的點(diǎn)到焦點(diǎn)的距離與準(zhǔn)線的距離相等的轉(zhuǎn)化.(2)注意數(shù)形結(jié)合,畫出合理草圖.答案(1)9(2)(1,3)探究提高解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、圖形的結(jié)構(gòu)特征、點(diǎn)的坐標(biāo)的范圍等.答案(
3、1)2(2)2探究提高(1)涉及弦長(zhǎng)的問題中,應(yīng)熟練地利用根與系數(shù)關(guān)系、設(shè)而不求法計(jì)算弦長(zhǎng);涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡(jiǎn)化運(yùn)算;涉及過焦點(diǎn)的弦的問題,可考慮用圓錐曲線的定義求解.(2)對(duì)于弦中點(diǎn)問題常用“根與系數(shù)的關(guān)系”或“點(diǎn)差法”求解,在使用根與系數(shù)的關(guān)系時(shí),要注意使用條件0,在用“點(diǎn)差法”時(shí),要檢驗(yàn)直線與圓錐曲線是否相交.1.橢圓、雙曲線的方程形式上可統(tǒng)一為Ax2By21,其中A,B是不等的常數(shù),AB0時(shí),表示焦點(diǎn)在y軸上的橢圓;BA0時(shí),表示焦點(diǎn)在x軸上的橢圓;AB0時(shí)表示雙曲線.2.對(duì)涉及圓錐曲線上點(diǎn)到焦點(diǎn)距離或焦點(diǎn)弦問題,恰當(dāng)選用定義解題,會(huì)效果明顯,定義中的定值是標(biāo)準(zhǔn)方程的基礎(chǔ).