《云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 11課件新人教A必修5》由會(huì)員分享,可在線閱讀,更多相關(guān)《云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 11課件新人教A必修5(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、等差數(shù)列等差數(shù)列 an等比數(shù)列等比數(shù)列 an定義定義an+1 - an = d ( 常數(shù)常數(shù) )an+1 an = q ( 不為零不為零的常數(shù)的常數(shù) )通項(xiàng)通項(xiàng) an = a1 + ( n 1 ) d an - am = ( n m ) d an = a1 qn-1 an am = qn-m公式公式推導(dǎo)推導(dǎo) 方法方法歸納猜想驗(yàn)證法歸納猜想驗(yàn)證法首尾相咬累首尾相咬累加加法法歸納猜想驗(yàn)證法歸納猜想驗(yàn)證法首尾相咬累首尾相咬累乘乘法法性質(zhì)性質(zhì)若若 m+n=r+s , m、n、r、sN*則則 am + an = ar + as若若 m+n=r+s , m、n、r、sN*則則 am an = ar as前
2、前n項(xiàng)項(xiàng)和和Sn公式公式推導(dǎo)推導(dǎo) 方法方法( a1 + an )nSn =2 = na1 +n(n 1)2d化零為整法化零為整法問題問題:等比數(shù)列:等比數(shù)列an,如果已知,如果已知a1 , q , n 怎樣表示怎樣表示Sn?Sn = a1 + a2 + + an解解:= a1 + a1q + a1q2 + + a1 qn-1= a1 ( 1 + q + q2 + + qn-1 )嘗試嘗試:S1 = a1S2 = a1 + a1q = a1 ( 1 + q )S3 = a1 + a1q + a1q2 = a1 ( 1+ q + q2 ) 討論討論q1時(shí)時(shí) a1( 1 q3 )1 - q= a1(
3、 1 q2 )1 - q= a1( 1 q1 )1 - q=猜想猜想: Sn a1( 1 qn )1 - q=驗(yàn)證驗(yàn)證:an = Sn - Sn-1 a1( 1 qn )1 - q=- a1( 1 q n-1 )1 - q= a1 qn-1 a1(q n-1 qn )1 - q=當(dāng)當(dāng)n2時(shí)時(shí)當(dāng)當(dāng)n=1時(shí)時(shí)a1 = S1 亦滿足上式亦滿足上式 an = a1 qn-1 Sn ( q1 ) a1( 1 qn )1 - q= a1( 1 qn )1 - q=Sn = a1 + a2 + + an= a1 + a1q + a1q2 + + a1 qn-1= a1 ( 1 + q + q2 + + qn
4、-1 )當(dāng)當(dāng) q1 時(shí)時(shí) 即即 1 + q + q2 + + qn-1 ()() 1 qn 1 - q=證明()式證明()式( 1 + q + q2 + + qn-1 ) ( 1 - q )= 1 + q + q2 + + qn-1 - ( q + q2 + + qn-1 + qn )= 1 - qn ()式成立()式成立相減相減( 1 q ) Sn = a1 - a1 qn= a1 ( 1 qn )當(dāng)當(dāng) 1 q 0 , 即即 q 1 時(shí),時(shí), Sn a1( 1 qn )1 - q=當(dāng)當(dāng) q = 1 時(shí),時(shí), Sn = n a1錯(cuò)項(xiàng)相減法錯(cuò)項(xiàng)相減法:Sn = a1 + a1q + a1q2 +
5、 + a1 qn-1q Sn = a1q + a1q2 + + a1 qn-1 + a1qn 等比數(shù)列等比數(shù)列a an n前前n n項(xiàng)和公式為項(xiàng)和公式為當(dāng)當(dāng)q1時(shí)時(shí) Sn a1( 1 qn )1 - q=當(dāng)當(dāng)q1時(shí)時(shí)Sn = n a1=a1 - an q1 - q練習(xí):練習(xí):(1) 124 263 (2)124 (2)n-1 = (3)等比數(shù)列)等比數(shù)列 an 中,中,a1 = 8 , q = , an = , 則則Sn=1212(4)等比數(shù)列)等比數(shù)列 an 中,中,a1 = 2 ,S3=26 , 則則 q = 264-11 ( - 2 ) n3312- 4 或或 3例例1 : 求通項(xiàng)為求通
6、項(xiàng)為 an = 2n + 2n -1 的數(shù)列的前的數(shù)列的前n項(xiàng)和項(xiàng)和解解:設(shè)設(shè) bn = 2n , 且對(duì)應(yīng)的前且對(duì)應(yīng)的前n項(xiàng)和為項(xiàng)和為 Cn=2n-1 , 對(duì)應(yīng)的前對(duì)應(yīng)的前n項(xiàng)和為項(xiàng)和為S n S n則則 an = bn Cn ,Sn = +S n S nS n= 2 ( 1 2 n ) 1 2 = 2 ( 2n 1 )= n2Sn =S n S n+=2n+1 + n2 - 2 S n= 1 + ( 2n - 1 ) 2 n例例2:求和:求和 ( x + ) + ( x2 + ) + ( x3 + ) + +( x +( xn n + )+ )1y1y21y31yn(1) 當(dāng)當(dāng) x 0 ,
7、y 1 時(shí)時(shí)(2) 當(dāng)當(dāng) x 0 時(shí)時(shí)解解:當(dāng)當(dāng) x = 1 時(shí)時(shí)Sn = ( x + x2 + + x + xn n ) + ( + + + ) + ( + + + )1y1y21yn(1)Sn = 1y( 1 - )1yn1 - 1y= n + yn+1 - yn yn - 1當(dāng)當(dāng) x 1 時(shí)時(shí)Sn = x ( 1 - xn )1 - x 1y( 1 - )1yn1 - 1y+ x ( 1 - xn )1 - x yn+1 - yn yn - 1+= n +( 2 ) 只須注意再討論只須注意再討論y是否等于是否等于1的取值情況的取值情況例例3: 求數(shù)列:求數(shù)列:1 , 2x , 3x2 ,
8、 ,nxnxn-1 n-1 , , (x0) x0) 的的前前n項(xiàng)和項(xiàng)和解解:當(dāng)當(dāng) x = 1 時(shí)時(shí) Sn = 1 + 2 + 3 + + n =n(n+1)2當(dāng)當(dāng) x 1 時(shí)時(shí) Sn = 1 + 2 x+ 3x2 + + nxn-1 x Sn = x+ 2x2 + + (n-1)xn-1 + nxn錯(cuò)項(xiàng)相減錯(cuò)項(xiàng)相減( 1 x ) Sn = 1 + x + x2 + + xn-1 - nxn=1 - xn1 - x- nxn Sn =1 - xn(1 - x)2-nxn1 - x=( 1 x )21 ( 1 + n ) xn + xn+1綜上所述:綜上所述:當(dāng)當(dāng) x = 1 時(shí)時(shí) Sn =n(
9、n+1)2當(dāng)當(dāng) x 1 時(shí)時(shí) Sn =( 1 x )21 ( 1 + n ) xn + xn+1等差數(shù)列等差數(shù)列 an等比數(shù)列等比數(shù)列 an定義定義an+1 - an = d ( 常數(shù)常數(shù) )an+1 an = q ( 不為零不為零的常數(shù)的常數(shù) )通項(xiàng)通項(xiàng) an = a1 + ( n 1 ) d an - am = ( n m ) d an = a1 qn-1 an am = qn-m公式公式推導(dǎo)推導(dǎo) 方法方法歸納猜想驗(yàn)證法歸納猜想驗(yàn)證法首尾相咬累首尾相咬累加加法法歸納猜想驗(yàn)證法歸納猜想驗(yàn)證法首尾相咬累首尾相咬累乘乘法法性質(zhì)性質(zhì)若若 m+n=r+s , m、n、r、sN*則則 am + an
10、= ar + as若若 m+n=r+s , m、n、r、sN*則則 am an = ar as前前n項(xiàng)項(xiàng)和和Sn公式公式推導(dǎo)推導(dǎo) 方法方法( a1 + an )nSn =2 = na1 +n(n 1)2d化零為整法化零為整法當(dāng)當(dāng)q1時(shí)時(shí) Sn = n a1當(dāng)當(dāng)q1時(shí)時(shí) Sn a1( 1 qn )1 - q=a1 - an q1 - q歸納猜想驗(yàn)證法歸納猜想驗(yàn)證法錯(cuò)項(xiàng)相減法錯(cuò)項(xiàng)相減法方法三方法三:Sn = a1 + a2 + + an= a1 + a1q + a1q2 + + a1 qn-1= a1 + q ( a1 + a1q + + a1 qn-2 )= a1 + q Sn-1= a1 + q ( Sn an ) ( 1 q ) Sn = a1 q an當(dāng)當(dāng)q1時(shí)時(shí) Sn a1( 1 qn )1 - q=a1 - an q1 - q當(dāng)當(dāng)q1時(shí)時(shí)Sn = n a1方法四方法四: 21aa32aa1nnaqa23121nnaaaqaaa1nnnsaqsa當(dāng)當(dāng)q1時(shí)時(shí) Sn a1( 1 qn )1 - q=a1 - an q1 - q當(dāng)當(dāng)q1時(shí)時(shí)Sn = n a1