《高考數(shù)學(xué)復(fù)習(xí):第六章 :第四節(jié)基本不等式演練知能檢測(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí):第六章 :第四節(jié)基本不等式演練知能檢測(cè)(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料
第四節(jié) 基本不等式
[全盤(pán)鞏固]
1.下列不等式一定成立的是( )
A.lg>lg x(x>0)
B.sin x+≥2(x≠kπ,k∈Z)
C.x2+1≥2|x|(x∈R)
D.>1(x∈R)
解析:選C 對(duì)選項(xiàng)A,當(dāng)x>0時(shí),x2+-x=2≥0,∴l(xiāng)g≥lg x,故不成立;對(duì)選項(xiàng)B,當(dāng)sin x<0時(shí)顯然不成立;對(duì)選項(xiàng)C,x2+1=|x|2+1≥2|x|,一定成立;對(duì)選項(xiàng)D,∵x2+1≥1,∴0<≤1.
2.若a,b∈R,且ab>0,則下列不等式中,恒成立的是( )
A.a(chǎn)+b≥2
2、 B.+>
C.+≥2 D.a(chǎn)2+b2>2ab
解析:選C 因?yàn)閍b>0,所以>0,>0,即+≥2 =2(當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立).
3.函數(shù)y=(x>1)的最小值是( )
A.2+2 B.2-2
C.2 D.2
解析:選A ∵x>1,∴x-1>0,
∴y=====x-1++2≥2 +2=2+2,當(dāng)且僅當(dāng)x-1=,即x=1+時(shí)取等號(hào).所以函數(shù)y=(x>1)的最小值為2+2.
4.(2014洛陽(yáng)模擬)已知x>0,y>0,x+2y+2xy=8,則x+2y的最小值是( )
A.3
3、 B.4 C. D.
解析:選B 依題意得x+1>1,2y+1>1,易知(x+1)(2y+1)=9,則(x+1)+(2y+1)≥2=2=6,當(dāng)且僅當(dāng)x+1=2y+1=3,即x=2,y=1時(shí)取等號(hào),因此有x+2y≥4,所以x+2y的最小值是4.
5.(2014寧波模擬)若正數(shù)x,y滿足4x2+9y2+3xy=30,則xy的最大值是( )
A. B. C.2 D.
解析:選C 由x>0,y>0,知4x2+9y2+3xy≥2(2x)(3y)+3xy(當(dāng)且僅當(dāng)2x=3y時(shí)等號(hào)成立),所以12xy+3xy≤30,即xy≤2.
4、
6.已知M是△ABC內(nèi)的一點(diǎn),且=2,∠BAC=30,若△MBC,△MCA和△MAB的面積分別為,x,y,則+的最小值是( )
A.20 B.18 C.16 D.19
解析:選B 由=||||cos 30=2,得||||=4,S△ABC=||||sin 30=1,
由+x+y=1,得x+y=.所以+=2(x+y)=2≥2(5+22)=18,當(dāng)且僅當(dāng)=,即x=,y=時(shí)取等號(hào).
所以+y的最小值為18.
7.已知正數(shù)x,y滿足x+2≤λ(x+y)恒成立,則實(shí)數(shù)λ的最小值為_(kāi)_______.
解析:依題意得x+2≤x+(x+2y)=2(x+y),即≤
5、2(當(dāng)且僅當(dāng)x=2y時(shí)取等號(hào)),即的最大值為2;又λ≥,因此有λ≥2,即λ的最小值為2.
答案:2
8.(2014杭州模擬)若正數(shù)x,y滿足2x+y-3=0,則的最小值為_(kāi)_____.
解析:由已知可得2x+y=3,因此=+==,利用基本不等式可得=≥=3,當(dāng)且僅當(dāng)=,即x=y(tǒng)時(shí)取得等號(hào).
答案:3[來(lái)源:]
9.(2014日照模擬)規(guī)定記號(hào)“?”表示一種運(yùn)算,即a?b=+a+b(a、b為正實(shí)數(shù)).若1?k=3,則k的值為_(kāi)_______,此時(shí)函數(shù)f(x)=的最小值為_(kāi)_______.
解析:1?k=+1+k=3,即k+-2=0,
∴=1或=-2(舍),∴k=1.
f(x)==
6、=1++≥1+2=3.
當(dāng)且僅當(dāng)=,即x=1時(shí)等號(hào)成立.
答案:1 3
10.已知x>0,y>0,且2x+8y-xy=0.
求:(1)xy的最小值;
(2)x+y的最小值.
解:(1)∵x>0,y>0,∴xy=2x+8y≥2,
即xy≥8,∴≥8,即xy≥64.
當(dāng)且僅當(dāng)2x=8y,即x=16,y=4時(shí)等號(hào)成立.[來(lái)源:]
∴xy的最小值為64.[來(lái)源:]
(2)∵x>0,y>0,且2x+8y-xy=0,
∴2x+8y=xy,即+=1.
∴x+y=(x+y)=10++≥10+2 =18,
當(dāng)且僅當(dāng)=,即x=2y=12時(shí)等號(hào)成立.
∴x+y的最小值為18.
11.已
7、知x>0,y>0,且2x+5y=20.
求:(1)u=lg x+lg y的最大值;
(2)+的最小值.
解:(1)∵x>0,y>0,
∴由基本不等式,得2x+5y≥2.
∵2x+5y=20,∴2≤20,xy≤10,
當(dāng)且僅當(dāng)2x=5y時(shí),等號(hào)成立.
因此有解得
此時(shí)xy有最大值10.
∴u=lg x+lg y=lg(xy)≤lg 10=1.
∴當(dāng)x=5,y=2時(shí),u=lg x+lg y有最大值1.
(2)∵x>0,y>0,
∴+==≥=,
當(dāng)且僅當(dāng)=時(shí),等號(hào)成立.[來(lái)源:]
由解得
∴+的最小值為.
12.某種商品原來(lái)每件定價(jià)為25元,年銷售量8萬(wàn)件.
(1)
8、據(jù)市場(chǎng)調(diào)查,若每件商品的價(jià)格每提高1元,銷售量將相應(yīng)減少2 000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高每?jī)r(jià)商品的價(jià)格到x元.公司擬投入(x2-600)萬(wàn)元作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入x萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
解:(1)設(shè)該商品每件定價(jià)為t元,
依題意,有t≥258,
整理得t2-65t+1 000≤0,解得25≤t≤
9、40.
∴要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為40元.
(2)依題意,x>25時(shí),
不等式ax≥258+50+(x2-600)+x有解,
等價(jià)于x>25時(shí),a≥+x+有解.[來(lái)源:]
∵+x≥2 =10(當(dāng)且僅當(dāng)x=30時(shí),等號(hào)成立),∴a≥10.2.
∴當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到10.2萬(wàn)件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和,此時(shí)該商品的每件定價(jià)為30元.
[沖擊名校]
1.設(shè)a>0,b>0,且不等式++≥0恒成立,則實(shí)數(shù)k的最小值等于( )
A.0 B.4 C.-4 D.-2
解析:選C 由+
10、+≥0,得k≥-,而=++2≥4(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào)),所以
-≤-4,因此要使k≥-恒成立,應(yīng)有k≥-4,即實(shí)數(shù)k的最小值等于
-4.
2.已知log2a+log2b≥1,則3a+9b的最小值為_(kāi)_______.
解析:log2a+log2b=log2ab.∵log2a+log2b≥1,∴ab≥2且a>0,b>0.
3a+9b=3a+32b≥2=2≥2≥2=18,當(dāng)且僅當(dāng)a=2b時(shí)取等號(hào).∴3a+9b的最小值為18.
答案:18
[高頻滾動(dòng)]
1.若變量x,y滿足約束條件則z=2x+y的最大值和最小值分別為( )
A.4和3 B.4和2 C.3和2 D.2和0
解析:選B 可行域?yàn)橹苯侨切蜛BC(如圖),
由z=2x+y,得y=-2x+z,由圖象可知,當(dāng)直線y=-2x+z過(guò)點(diǎn)B(2,0)和點(diǎn)A(1,0)時(shí),z分別取到最大值4和最小值2.
2.設(shè)實(shí)數(shù)x,y滿足不等式組若x,y為整數(shù),則3x+4y的最小值是( )
A.14 B.16 C.17 D.19
解析:選B 畫(huà)出可行域如圖.
其最優(yōu)解是點(diǎn)M(3,1)附近的整點(diǎn).考慮到線性目標(biāo)函數(shù),只要橫坐標(biāo)增加1即可.故最優(yōu)點(diǎn)為整點(diǎn)(4,1),其最小值為16.