《精校版人教版數(shù)學(xué)七年級(jí)下冊(cè):5.4平移教案1》由會(huì)員分享,可在線閱讀,更多相關(guān)《精校版人教版數(shù)學(xué)七年級(jí)下冊(cè):5.4平移教案1(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、最新資料最新資料最新資料最新資料最新資料
《平移》教案
教學(xué)目的:要求學(xué)生理解“平移”的概念和平移的幾何意義,并掌握平移公式,能運(yùn)用公式解決有關(guān)具體問(wèn)題。(如求平移后的函數(shù)解析式)
教學(xué)重點(diǎn):平移公式
教學(xué)難點(diǎn):利用點(diǎn)的平移公式化簡(jiǎn)函數(shù)解析式
教學(xué)方法:?jiǎn)l(fā)式
教學(xué)過(guò)程:
a
a
a
a
F
P′
P
F′
O
一、復(fù)習(xí)引入函數(shù)圖象的沿x軸或y軸平移
二、新課講解:
1、 平移的概念:將圖形上所有點(diǎn)按同一方向移動(dòng)同樣
的長(zhǎng)度,得到另一個(gè)圖形,這個(gè)過(guò)程稱做圖形的平移。
(點(diǎn)的位置、圖形的位置改變,而形狀、大小沒(méi)有改變,
從而導(dǎo)致函數(shù)的解析式也隨著改變)
2、。(作圖、講解)
2、平移公式的推導(dǎo):
設(shè)P(x,y)是圖形F上的任意一點(diǎn),它在平移后的圖象F′上的對(duì)應(yīng)點(diǎn)為P′(x′,y′)可以看出一個(gè)平移實(shí)質(zhì)上是一個(gè)向量。
設(shè)=(h,k),即:∴(x′,y′)=(x,y)+(h,k)
∴——平移公式
注意:1.它反映了平移后的新坐標(biāo)與原坐標(biāo)間的關(guān)系;2.知二求一
三、應(yīng)用:
例1、將函數(shù)y=3x的圖象l按a=(0,3)平移到l′,求l′的函數(shù)解析式。
P
P′
a
O
解:設(shè)P(x,y)為l上任一點(diǎn),它在l′上的對(duì)應(yīng)點(diǎn)為P′(x′,y′)
由平移公式:
代入y=3x得:y′-3=3x′即:y′=3x′+3
按習(xí)慣,將x′、y
3、′寫(xiě)成x、y得l′的解析式:y=2x+3
(實(shí)際上是圖象向上平移了3個(gè)單位)
課堂練習(xí):課本123頁(yè)練習(xí)3
例2、函數(shù)圖象按向量平移后圖象的解析式為,求,
解法一:設(shè)向量=(h,k)P(x,y)是函數(shù)圖象上任一點(diǎn),平移后函數(shù)圖象上的對(duì)應(yīng)點(diǎn)為,由平移公式得
將它代入得為同一函數(shù),,故所求向量
解法二:即
令則得所以將函數(shù)的圖象按
平移后得到的解析式為。
例3、已知拋物線,(1)求將這條拋物線的頂點(diǎn)平移到點(diǎn)(3,-2)時(shí)的函數(shù)解析式;(2)將此拋物線按怎樣的向量平移,能使平移后的函數(shù)解析式為?
解:的頂點(diǎn)坐標(biāo)是(2,-12),于是平移向量=(1,10)
又點(diǎn)
(2)將代入得
令
所以當(dāng)按向量平移時(shí),可使平移后的函數(shù)解析式為
四、小結(jié):平移公式及應(yīng)用
五、作業(yè):課本124頁(yè)習(xí)題5.8
最新精品資料