高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案18

上傳人:仙*** 文檔編號(hào):43054137 上傳時(shí)間:2021-11-29 格式:DOC 頁(yè)數(shù):12 大?。?78KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案18_第1頁(yè)
第1頁(yè) / 共12頁(yè)
高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案18_第2頁(yè)
第2頁(yè) / 共12頁(yè)
高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案18_第3頁(yè)
第3頁(yè) / 共12頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案18》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案18(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 精品資料 學(xué)案18 三角函數(shù)的圖象與性質(zhì) 導(dǎo)學(xué)目標(biāo): 1.能畫出y=sin x,y=cos x,y=tan x的圖象,了解三角函數(shù)的周期性.2.理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]上的性質(zhì)(如單調(diào)性、最大值和最小值以及與x軸的交點(diǎn)等),理解正切函數(shù)在區(qū)間內(nèi)的單調(diào)性. 自主梳理 1.周期函數(shù) (1)周期函數(shù)的定義 對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定域內(nèi)的每一個(gè)x值,都滿足__________,那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)____叫做這個(gè)函數(shù)的周期. (2)最小正周期 如果在周期函數(shù)f(x)的

2、所有周期中存在一個(gè)________________,那么這個(gè)________________就叫做f(x)的最小正周期. 2.三角函數(shù)的圖象和性質(zhì) 函數(shù) y=sin x y=cos x y=tan x 圖象 定義域 值域 周期性 奇偶性 單調(diào)性 在______________上增,在______________上減 在_____________上增, 在_____________上減 在定義域的每一個(gè)區(qū)間____________________內(nèi)是增函數(shù) 對(duì)稱性 對(duì)稱中心 (kπ,0) (k∈Z)

3、 (kπ+,0) (k∈Z) (,0) (k∈Z) 對(duì)稱軸 x=kπ+, (k∈Z) x=kπ, (k∈Z) 無(wú) 自我檢測(cè) 1.設(shè)點(diǎn)P是函數(shù)f(x)=sin ωx(ω≠0)的圖象C的一個(gè)對(duì)稱中心,若點(diǎn)P到圖象C的對(duì)稱軸的距離的最小值是,則f(x)的最小正周期是________. 2.函數(shù)y=3-2cos(x-)的最大值為________,此時(shí)x=________. 3.函數(shù)y=tan(-x)的定義域是________. 4.比較大?。簊in(-)________sin(-). 5.如果函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)中心對(duì)稱,那么|φ|的最小值為____

4、____. 探究點(diǎn)一 求三角函數(shù)的定義域 例1 求函數(shù)y=+的定義域. 變式遷移1 函數(shù)y=+lg(2sin x-1)的定義域?yàn)開_______________________. 探究點(diǎn)二 三角函數(shù)的單調(diào)性 例2 求函數(shù)y=2sin的單調(diào)區(qū)間. 變式遷移2 (1)求函數(shù)y=sin,x∈[-π,π]的單調(diào)遞減區(qū)間; (2)求函數(shù)y=3tan的周期及單調(diào)區(qū)間. 探究點(diǎn)三 三角函數(shù)的值域與最值 例3 已知函數(shù)f(x)=2asin(2x-)+b的定義域?yàn)閇0,],函數(shù)的最大值為1,最小值為-5,求a和b的值. 變

5、式遷移3 設(shè)函數(shù)f(x)=acos x+b的最大值是1,最小值是-3,試確定g(x)=bsin(ax+)的周期. 轉(zhuǎn)化與化歸思想 例 (14分)求下列函數(shù)的值域: (1)y=-2sin2x+2cos x+2; (2)y=3cos x-sin x,x∈[0,]; (3)y=sin x+cos x+sin xcos x. 【答題模板】 解 (1)y=-2sin2x+2cos x+2=2cos2x+2cos x =2(cos x+)2-,cos x∈[-1,1]. 當(dāng)cos x=1時(shí),ymax=4,當(dāng)cos x=-時(shí),ymin=-, 故函數(shù)值域?yàn)閇-,4].[

6、4分] (2)y=3cos x-sin x=2cos(x+). ∵x∈[0,],∴≤x+≤,∵y=cos x在[,]上單調(diào)遞減, ∴-≤cos(x+)≤,∴-≤y≤3,故函數(shù)值域?yàn)閇-,3].[9分] (3)令t=sin x+cos x,則sin xcos x=,且|t|≤. ∴y=t+=(t+1)2-1,∴當(dāng)t=-1時(shí),ymin=-1; 當(dāng)t=時(shí),ymax=+. ∴函數(shù)值域?yàn)閇-1,+].[14分] 【突破思維障礙】  1.對(duì)于形如f(x)=Asin(ωx+φ),x∈[a,b]的函數(shù)在求值域時(shí),需先確定ωx+φ的范圍,再求值域.同時(shí),對(duì)于形如y=asin ωx+bcos ω

7、x+c的函數(shù),可借助輔助角公式,將函數(shù)化為y=sin(ωx+φ)+c的形式,從而求得函數(shù)的最值. 2.關(guān)于y=acos2x+bcos x+c(或y=asin2x+bsin x+c)型或可化為此型的函數(shù)求值域,一般可化為二次函數(shù)在閉區(qū)間上的值域問(wèn)題. 給你提個(gè)醒!不論用什么方法,切忌忽略函數(shù)的定義域. 1.熟練掌握正弦函數(shù)、余弦函數(shù)、正切函數(shù)的定義、圖象和性質(zhì)是研究三角問(wèn)題的基礎(chǔ),三角函數(shù)的定義域是研究其他一切性質(zhì)的前提,求三角函數(shù)的定義域?qū)嵸|(zhì)上就是解最簡(jiǎn)單的三角不等式(組). 2.三角函數(shù)的值域問(wèn)題,實(shí)質(zhì)上是含有三角函數(shù)的復(fù)合函數(shù)的值域問(wèn)題. 3.函數(shù)y=Asin(ωx+φ) (

8、A>0,ω>0)的單調(diào)區(qū)間的確定,基本思想是把ωx+φ看作一個(gè)整體,利用y=sin x的單調(diào)區(qū)間來(lái)求. (滿分:90分) 一、填空題(每小題6分,共48分) 1.函數(shù)y=Asin(ωx+φ) (A,ω,φ為常數(shù),A>0,ω>0)在閉區(qū)間[-π,0]上的圖象如圖所示,則ω=________. 2.(2010江蘇6校高三聯(lián)考)已知函數(shù)y=tan ωx (ω>0)與直線y=a相交于A、B兩點(diǎn),且|AB|最小值為π,則函數(shù)f(x)=sin ωx-cos ωx的單調(diào)增區(qū)間是________. 3.(2011江蘇四市聯(lián)考)若函數(shù)f(x)=2sin ωx(ω>0)在[-,]上單調(diào)遞增,則ω

9、的最大值為________. 4.把函數(shù)y=cos(x+)的圖象向左平移φ(φ>0)個(gè)單位,所得的函數(shù)為偶函數(shù),則φ的最小值是________. 5.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R)有下列命題: (1)由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍; (2)y=f(x)的表達(dá)式可改寫為y=4cos(2x-); (3)y=f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱; (4)y=f(x)的圖象關(guān)于x=-對(duì)稱. 其中正確命題的序號(hào)是________.(把你認(rèn)為正確的命題序號(hào)都填上) 6.(2011泰州調(diào)研)定義函數(shù)f(x)=給出下列四個(gè)命題: ①該函數(shù)的值域?yàn)閇-1

10、,1]; ②當(dāng)且僅當(dāng)x=2kπ+(k∈Z)時(shí),該函數(shù)取得最大值; ③該函數(shù)是以π為最小正周期的周期函數(shù); ④當(dāng)且僅當(dāng)2kπ+π

11、4分)(2010福建改編)已知函數(shù)f(x)=2sin(ωx+)+a(ω>0)與g(x)=2cos(2x+φ)+1的圖象的對(duì)稱軸完全相同. (1)求函數(shù)f(x)的最小正周期; (2)求函數(shù)f(x)的單調(diào)遞減區(qū)間; (3)當(dāng)x∈[0,]時(shí),f(x)的最小值為-2,求a的值. 10.(14分)已知函數(shù)f(x)=,求它的定義域和值域,并判斷它的奇偶性. 11.(14分)(2010宿遷高三二模)已知向量a=(sin x,2sin x),b=(2cos x,sin x),定義f(x)=ab-. (1)求函數(shù)y=f(x),x∈R的單調(diào)遞減區(qū)間; (2)若函數(shù)y=

12、f(x+θ) (0<θ<)為偶函數(shù),求θ的值. 答案 自主梳理 1.(1)f(x+T)=f(x) T (2)最小的正數(shù) 最小的正數(shù) 2.R R {x|x≠kπ+,k∈Z} [-1,1] [-1,1] R 2π 2π π 奇函數(shù) 偶函數(shù) 奇函數(shù) [2kπ-,2kπ+] (k∈Z) [2kπ+,2kπ+π](k∈Z) [2kπ-π,2kπ] (k∈Z) [2kπ,2kπ+π] (k∈Z) (kπ-,kπ+)(k∈Z) 自我檢測(cè) 1.π 2.5?。?kπ(k∈Z) 3.{x|x≠kπ+,k∈Z} 4.> 5. 課堂活動(dòng)區(qū) 例1 解題導(dǎo)引 求三角函數(shù)的定義域時(shí),需要轉(zhuǎn)

13、化為三角不等式(組)求解,常常借助于三角函數(shù)的圖象和周期解決,求交集時(shí)可以利用單位圓,對(duì)于周期相同的可以先求交集再加周期的整數(shù)倍即可. 解 要使函數(shù)有意義, 則得 所以函數(shù)的定義域?yàn)? 變式遷移1 ,k∈Z 解析 由題意得?, 解得, 即x∈,k∈Z. 例2 解題導(dǎo)引 求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函數(shù)的單調(diào)區(qū)間,可以通過(guò)解不等式的方法去解答,列不等式的原則是:①把“ωx+φ (ω>0)”視為一個(gè)“整體”;②A>0 (A<0)時(shí),所列不等式的方向與y=sin x(x∈R),y=cos x(x∈R)的單調(diào)區(qū)間對(duì)應(yīng)的不等式方向相同(

14、反). 解 方法一 y=2sin化成y=-2sin. ∵y=sin u(u∈R)的遞增、遞減區(qū)間分別為 (k∈Z)、(k∈Z), ∴令2kπ+≤x-≤2kπ+(k∈Z), 解得2kπ+≤x≤2kπ+(k∈Z), 令2kπ-≤x-≤2kπ+ (k∈Z), 解得2kπ-≤x≤2kπ+ (k∈Z). ∴函數(shù)y=2sin的單調(diào)遞減區(qū)間、單調(diào)遞增區(qū)間分別為 (k∈Z)、 (k∈Z). 方法二 y=2sin可看作是由y=2sin u與u=-x復(fù)合而成的.又∵u=-x為減函數(shù), ∴由2kπ-≤u≤2kπ+(k∈Z), 即2kπ-≤-x≤2kπ+ (k∈Z), 得-2kπ-≤x≤-

15、2kπ+ (k∈Z), 即(k∈Z)為 y=2sin的遞減區(qū)間. 由2kπ+≤u≤2kπ+ (k∈Z), 即2kπ+≤-x≤2kπ+ (k∈Z), 得-2kπ-≤x≤-2kπ- (k∈Z), 即(k∈Z)為 y=2sin的遞增區(qū)間. 綜上可知,y=2sin的遞增區(qū)間為 (k∈Z); 遞減區(qū)間為 (k∈Z). 變式遷移2 解 (1)由y=sin, 得y=-sin, 由-+2kπ≤2x-≤+2kπ 得-+kπ≤x≤+kπ,k∈Z,又x∈[-π,π], ∴-π≤x≤-π,-≤x≤π,π≤x≤π. ∴函數(shù)y=sin,x∈[-π,π]的單調(diào)遞減區(qū)間為,,. (2)函數(shù)y

16、=3tan的周期T==4π. 由y=3tan 得y=-3tan, 由-+kπ<-<+kπ得 -π+4kπ0,則,解得; 若a<0,則,解得. 綜上可知,a=12-6,b=-23+12 或a=-12+6,b=19-12. 變式遷移3 解 ∵x∈R,∴cos x∈[-

17、1,1]. 若a>0,則,解得; 若a<0,則,解得. 所以g(x)=-sin(2x+)或g(x)=sin(2x-),周期為π. 課后練習(xí)區(qū) 1.3 解析 由圖可知,T=,∴ω==3. 2. (k∈Z) 3. 4. 解析 向左平移φ個(gè)單位后的解析式為y=cos(x++φ), 當(dāng)+φ=kπ(k∈Z)時(shí),函數(shù)y=cos(x++φ)為偶函數(shù), ∴φ=kπ-(k∈Z).當(dāng)k=2時(shí),φmin=. 5.(2)(3) 解析 (1)不正確.可舉反例,如f(-)=f()=0但--=-. (2)正確.∵y=4sin(2x+)=4cos[-(2x+)] =4cos(-2x+)=4cos

18、(2x-). (3)正確.∵f(-)=0, ∴y=f(x)的圖象與x軸交于(-,0)點(diǎn). (4)不正確.∵f(-)既不是y的最大值也不是y的最小值.故答案為(2)(3). 6.1 解析 當(dāng)2kπ+≤x≤2kπ+(k∈Z)時(shí),sin x≥cos x,所以f(x)=sin x,f(x)∈[-,1];x=2kπ+(k∈Z)時(shí),該函數(shù)取得最大值; 當(dāng)且僅當(dāng)2kπ+π

19、x<2kπ-(k∈Z)時(shí), f(x)<0.綜合得:①②錯(cuò)誤,④正確,周期還是2π,所以③錯(cuò)誤. 7.4π 解析 由f(x1)≤f(x)≤f(x2)知,f(x1)、f(x2)分別為f(x)的最小值和最大值,而當(dāng)=2kπ-,即x=8kπ-2π (k∈Z)時(shí),f(x)取最小值;而=2kπ+,即x=8kπ+2π (k∈Z)時(shí),f(x)取最大值, ∴|x1-x2|的最小值為4π. 8. 解析 線段P1P2的長(zhǎng)即為sin x的值,且其中的x滿足6cos x=5tan x,x∈,解得sin x=.所以線段P1P2的長(zhǎng)為. 9.解 (1)∵f(x)和g(x)的對(duì)稱軸完全相同, ∴二者的周期相同

20、,即ω=2,f(x)=2sin(2x+)+a,…………………………………(3分) ∴f(x)的最小正周期T==π. …………………………………………………………(5分) (2)當(dāng)2kπ+≤2x+≤2kπ+, 即kπ+≤x≤kπ+(k∈Z)時(shí),函數(shù)f(x)單調(diào)遞減, 故函數(shù)f(x)的單調(diào)遞減區(qū)間為 [kπ+,kπ+](k∈Z).………………………………………………………………(10分) (3)當(dāng)x∈[0,]時(shí),2x+∈[,],…………………………………………………(12分) ∴當(dāng)x=時(shí),f(x)取得最小值, ∴2sin(2+)+a=-2,∴a=-1.………………………………………

21、……………(14分) 10.解 由題意知cos 2x≠0,得2x≠kπ+, 解得x≠+ (k∈Z). ∴f(x)的定義域?yàn)閧x∈R|x≠+,k∈Z}.……………………………………………(4分) 又f(x)== =cos2x-1=-sin2x,……………………………………………………………………(8分) 又∵定義域關(guān)于原點(diǎn)對(duì)稱,∴f(x)是偶函數(shù).…………………………………………(10分) 顯然-sin2x∈[-1,0], 又∵x≠+,k∈Z,∴-sin2x≠-. ∴原函數(shù)的值域?yàn)? .……………………………………………………………(14分) 11.解 f(x)=2sin xcos x+2sin2x- =sin 2x+2- =sin 2x-cos 2x=2sin.………………………………………………………(4分) (1)令2kπ+≤2x-≤2kπ+,k∈Z 解得單調(diào)遞減區(qū)間是,k∈Z.………………………………………(8分) (2)f(x+θ)=2sin. 根據(jù)三角函數(shù)圖象性質(zhì)可知, y=f(x+θ) 在x=0處取最值, ∴sin=1, ∴2θ-=kπ+,θ=+,k∈Z.……………………………………………………(12分) 又0<θ<,解得θ=.…………………………………………………………………(14分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!