一輪北師大版理數(shù)學(xué)教案:第8章 第4節(jié) 直線與圓、圓與圓的位置關(guān)系 Word版含解析

上傳人:仙*** 文檔編號(hào):42151637 上傳時(shí)間:2021-11-24 格式:DOC 頁(yè)數(shù):9 大?。?63.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
一輪北師大版理數(shù)學(xué)教案:第8章 第4節(jié) 直線與圓、圓與圓的位置關(guān)系 Word版含解析_第1頁(yè)
第1頁(yè) / 共9頁(yè)
一輪北師大版理數(shù)學(xué)教案:第8章 第4節(jié) 直線與圓、圓與圓的位置關(guān)系 Word版含解析_第2頁(yè)
第2頁(yè) / 共9頁(yè)
一輪北師大版理數(shù)學(xué)教案:第8章 第4節(jié) 直線與圓、圓與圓的位置關(guān)系 Word版含解析_第3頁(yè)
第3頁(yè) / 共9頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《一輪北師大版理數(shù)學(xué)教案:第8章 第4節(jié) 直線與圓、圓與圓的位置關(guān)系 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《一輪北師大版理數(shù)學(xué)教案:第8章 第4節(jié) 直線與圓、圓與圓的位置關(guān)系 Word版含解析(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第四節(jié) 直線與圓、圓與圓的位置關(guān)系 [考綱傳真] 1.能根據(jù)給定直線、圓的方程判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個(gè)圓的方程判斷兩圓的位置關(guān)系.2.能用直線和圓的方程解決一些簡(jiǎn)單的問(wèn)題.3.初步了解用代數(shù)方法處理幾何問(wèn)題的思想. 1.判斷直線與圓的位置關(guān)系常用的兩種方法 (1)幾何法:利用圓心到直線的距離d和圓半徑r的大小關(guān)系:dr?相離. (2)代數(shù)法:聯(lián)立直線l與圓C的方程,消去y(或x),得一元二次方程,計(jì)算判別式Δ=b2-4ac,Δ>0?相交,Δ=0?相切,Δ<0?相離. 2.圓與圓的位置關(guān)系 設(shè)圓O1:(x-a1)2+(y-b1)2=

2、r(r1>0), 圓O2:(x-a2)2+(y-b2)2=r(r2>0). 方法 位置 關(guān)系   幾何法:圓心距d與r1,r2的關(guān)系 代數(shù)法:聯(lián)立兩個(gè)圓的方程組成方程組的解的情況 相離 d>r1+r2 無(wú)解 外切 d=r1+r2 一組實(shí)數(shù)解 相交 |r2-r1|

3、(  ) (2)如果兩個(gè)圓的方程組成的方程組只有一組實(shí)數(shù)解,則兩圓外切.(  ) (3)如果兩圓的圓心距小于兩半徑之和,則兩圓相交.(  ) (4)若兩圓相交,則兩圓方程相減消去二次項(xiàng)后得到的二元一次方程是公共弦所在直線的方程.(  ) [解析] 依據(jù)直線與圓、圓與圓的位置關(guān)系,只有(4)正確. [答案] (1) (2) (3) (4)√ 2.(教材改編)圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為(  ) A.內(nèi)切     B.相交 C.外切 D.相離 B [兩圓圓心分別為(-2,0),(2,1),半徑分別為2和3,圓心距d==. ∵3-2

4、3+2,∴兩圓相交.] 3.(2017合肥調(diào)研)直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是(  ) 【導(dǎo)學(xué)號(hào):57962384】 A.-2或12 B.2或-12 C.-2或-12 D.2或12 D [由圓x2+y2-2x-2y+1=0,知圓心(1,1),半徑為1,所以=1,解得b=2或12.] 4.在平面直角坐標(biāo)系xOy中,直線x+2y-3=0被圓(x-2)2+(y+1)2=4截得的弦長(zhǎng)為_(kāi)_________.  [圓心為(2,-1),半徑r=2. 圓心到直線的距離d==, 所以弦長(zhǎng)為2=2=.] 5.(2016全國(guó)卷Ⅰ)設(shè)直線y=x+2a與圓C

5、:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2,則圓C的面積為_(kāi)_______. 4π [圓C:x2+y2-2ay-2=0化為標(biāo)準(zhǔn)方程是C:x2+(y-a)2=a2+2, 所以圓心C(0,a),半徑r=.|AB|=2,點(diǎn)C到直線y=x+2a即x-y+2a=0的距離d=,由勾股定理得+=a2+2,解得a2=2,所以r=2,所以圓C的面積為π22=4π.] 直線與圓的位置關(guān)系  (1)(2017豫南九校聯(lián)考)直線l:mx-y+1-m=0與圓C:x2+(y-1)2=5的位置關(guān)系是(  ) A.相交   B.相切 C.相離 D.不確定 (2)已知直線l:x+ay-1

6、=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱(chēng)軸.過(guò)點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=(  ) A.2 B.4 C.6 D.2 (1)A (2)C [(1)法一:∵圓心(0,1)到直線l的距離d=<1<. 故直線l與圓相交. 法二:直線l:mx-y+1-m=0過(guò)定點(diǎn)(1,1),∵點(diǎn)(1,1)在圓C:x2+(y-1)2=5的內(nèi)部,∴直線l與圓C相交. (2)由圓C的標(biāo)準(zhǔn)方程為(x-2)2+(y-1)2=4. ∴圓心為C(2,1),半徑r=2, 由于直線x+ay-1=0是圓C:x2+y2-4x-2y+1=0的對(duì)稱(chēng)軸,∴圓心C(2,1)在直線x+ay

7、-1=0上,∴2+a-1=0,∴a=-1,∴A(-4,-1). 于是|AB|2=|AC|2-r2=40-4=36,則|AB|=6.] [規(guī)律方法] 1.(1)利用圓心到直線的距離可判斷直線與圓的位置關(guān)系,也可利用直線的方程與圓的方程聯(lián)立后得到的一元二次方程的判別式來(lái)判斷直線與圓的位置關(guān)系; (2)注意靈活運(yùn)用圓的幾何性質(zhì),聯(lián)系圓的幾何特征,數(shù)形結(jié)合,簡(jiǎn)化運(yùn)算.如“切線與過(guò)切點(diǎn)的半徑垂直”等. 2.與弦長(zhǎng)有關(guān)的問(wèn)題常用幾何法,即利用弦心距、半徑和弦長(zhǎng)的一半構(gòu)成直角三角形進(jìn)行求解. [變式訓(xùn)練1] (1)(2017山西忻州模擬)過(guò)點(diǎn)(3,1)作圓(x-1)2+y2=r2的切線有且只有一條

8、,則該切線的方程為(  ) 【導(dǎo)學(xué)號(hào):57962385】 A.2x+y-5=0    B.2x+y-7=0 C.x-2y-5=0 D.x-2y-7=0 (2)(2016全國(guó)卷Ⅲ)已知直線l:x-y+6=0與圓x2+y2=12交于A,B兩點(diǎn),過(guò)A,B分別作l的垂線與x軸交于C,D兩點(diǎn),則|CD|=__________. (1)B (2)4 [(1)依題意知,點(diǎn)(3,1)在圓(x-1)2+y2=r2上,且為切點(diǎn). ∴圓心(1,0)與切點(diǎn)(3,1)連線的斜率為. 因此切線的斜率k=-2. 故圓的切線方程為y-1=-2(x-3),即2x+y-7=0. (2)由圓x2+y2=12知圓

9、心O(0,0),半徑r=2. ∴圓心(0,0)到直線x-y+6=0的 距離d==3,|AB|=2=2. 過(guò)C作CE⊥BD于E. 如圖所示,則|CE|=|AB|=2. ∵直線l的方程為x-y+6=0, ∴kAB=,則∠BPD=30,從而∠BDP=60. ∴|CD|====4.] 圓與圓的位置關(guān)系  (2016山東高考)已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長(zhǎng)度是2,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是(  ) A.內(nèi)切 B.相交 C.外切 D.相離 B [法一:由得兩交點(diǎn)為(0,0),(-a,a). ∵圓M截直線所

10、得線段長(zhǎng)度為2, ∴=2.又a>0,∴a=2. ∴圓M的方程為x2+y2-4y=0,即x2+(y-2)2=4,圓心M(0,2),半徑r1=2. 又圓N:(x-1)2+(y-1)2=1,圓心N(1,1),半徑r2=1, ∴|MN|==. ∵r1-r2=1,r1+r2=3,1<|MN|<3,∴兩圓相交. 法二:∵x2+y2-2ay=0(a>0)?x2+(y-a)2=a2(a>0), ∴M(0,a),r1=a. ∵圓M截直線x+y=0所得線段的長(zhǎng)度為2,∴圓心M到直線x+y=0的距離d==,解得a=2. 以下同法一.] [規(guī)律方法] 1.圓與圓的位置關(guān)系取決于圓心距與兩個(gè)半徑的和

11、與差的大小關(guān)系. 2.若兩圓相交,則兩圓的公共弦所在直線的方程可由兩圓的方程作差消去x2,y2項(xiàng)得到. 3.若兩圓相交,則兩圓的連心線垂直平分公共弦. [變式訓(xùn)練2] 若⊙O:x2+y2=5與⊙O1:(x-m)2+y2=20(m∈R)相交于A,B兩點(diǎn),且兩圓在點(diǎn)A處的切線互相垂直,則線段AB的長(zhǎng)度是__________. 4 [由題意⊙O1與⊙O在A處的切線互相垂直,則兩切線分別過(guò)另一圓的圓心, ∴O1A⊥OA. 又∵|OA|=,|O1A|=2, ∴|OO1|=5. 又A,B關(guān)于OO1對(duì)稱(chēng), ∴AB為Rt△OAO1斜邊上高的2倍. 又∵OAO1A=OO1AC,得AC=2

12、. ∴AB=4.] 直線與圓的綜合問(wèn)題  (2016江蘇高考改編)如圖841,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4). 圖841 (1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程; (2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,求直線l的方程. [解] 圓M的標(biāo)準(zhǔn)方程為(x-6)2+(y-7)2=25, 所以圓心M(6,7),半徑為5. 1分 (1)由圓心N在直線x=6上,可設(shè)N(6,y0). 因?yàn)閳AN與x軸相切,與圓M外切, 所以0

13、半徑為y0,從而7-y0=5+y0,解得y0=1. 4分 因此,圓N的標(biāo)準(zhǔn)方程為(x-6)2+(y-1)2=1. 5分 (2)因?yàn)橹本€l∥OA, 所以直線l的斜率為=2. 設(shè)直線l的方程為y=2x+m, 即2x-y+m=0, 則圓心M到直線l的距離 d==. 8分 因?yàn)锽C=OA==2, 而MC2=d2+, 所以25=+5,解得m=5或m=-15. 故直線l的方程為2x-y+5=0或2x-y-15=0. 12分 [規(guī)律方法] 1.(1)設(shè)出圓N的圓心N(6,y0),由條件圓M與圓N外切,求得圓心與半徑,從而確定圓的標(biāo)準(zhǔn)方程.(2)依據(jù)平行直線,設(shè)出直線l的方程,根據(jù)點(diǎn)

14、到直線的距離公式及勾股定理求解. 2.求弦長(zhǎng)常用的方法:①弦長(zhǎng)公式;②半弦長(zhǎng)、半徑、弦心距構(gòu)成直角三角形,利用勾股定理求解(幾何法). [變式訓(xùn)練3] (2017天津南開(kāi)中學(xué)模擬)在平面直角坐標(biāo)系xOy中,圓C:x2+y2+4x-2y+m=0與直線x-y+-2=0相切. (1)求圓C的方程; (2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱(chēng),且|MN|=2,求直線MN的方程. [解] (1)將圓C:x2+y2+4x-2y+m=0化為(x+2)2+(y-1)2=5-m. 1分 ∵圓C:x2+y2+4x-2y+m=0與直線x-y+-2=0相切, ∴圓心(-2,1)到直線x-y+-2

15、=0的距離d==2=r, 4分 ∴圓C的方程為(x+2)2+(y-1)2=4. 5分 (2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱(chēng),則可設(shè)直線MN的方程為2x-y+c=0. 7分 ∵|MN|=2,半徑r=2, ∴圓心(-2,1)到直線MN的距離為=1. 則=1,∴c=5.10分 ∴直線MN的方程為2x-y+5=0. 12分 [變式訓(xùn)練3] (文)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線:x-y=4相切. (1)求圓O的方程; (2)若圓O上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱(chēng),且|MN|=2,求直線MN的方程. [解] (1)依題意,圓O的半徑r等于原點(diǎn)O到

16、直線x-y=4的距離, 則r==2. 所以圓O的方程為x2+y2=4. 5分 (2)由題意,可設(shè)直線MN的方程為2x-y+m=0. 則圓心O到直線MN的距離d=. 7分 由垂徑分弦定理,得+()2=22,即m=. 10分 所以直線MN的方程為2x-y+=0或2x-y-=0. 12分 [思想與方法] 1.直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方程的結(jié)合,解題時(shí)要抓住圓的幾何性質(zhì),重視數(shù)形結(jié)合思想方法的應(yīng)用. 2.計(jì)算直線被圓截得的弦長(zhǎng)的常用方法: (1)幾何方法:運(yùn)用弦心距(即圓心到直線的距離)、弦長(zhǎng)的一半及半徑構(gòu)成直角三角形計(jì)算. (2)代數(shù)方法:弦長(zhǎng)公式|AB|=|xA-xB|=. [易錯(cuò)與防范] 1.求圓的弦長(zhǎng)問(wèn)題,注意應(yīng)用圓的性質(zhì)解題,即用圓心與弦中點(diǎn)連線與弦垂直的性質(zhì),可以用勾股定理或斜率之積為“-1”列方程來(lái)簡(jiǎn)化運(yùn)算. 2.過(guò)圓上一點(diǎn)作圓的切線有且只有一條;過(guò)圓外一點(diǎn)作圓的切線有且只有兩條,若僅求得一條,除了考慮運(yùn)算過(guò)程是否正確外,還要考慮斜率不存在的情況,以防漏解.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!