高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第1節(jié) 隨機(jī)事件的概率學(xué)案 文 北師大版
《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第1節(jié) 隨機(jī)事件的概率學(xué)案 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第1節(jié) 隨機(jī)事件的概率學(xué)案 文 北師大版(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第一節(jié) 隨機(jī)事件的概率 [考綱傳真] 1.了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義及頻率與概率的區(qū)別.2.了解兩個(gè)互斥事件的概率加法公式. (對(duì)應(yīng)學(xué)生用書第148頁) [基礎(chǔ)知識(shí)填充] 1.隨機(jī)事件和確定事件 (1)在條件S下,一定會(huì)發(fā)生的事件,叫作相對(duì)于條件S的必然事件. (2)在條件S下,一定不會(huì)發(fā)生的事件,叫作相對(duì)于條件S的不可能事件. (3)必然事件與不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件. (4)在條件S下可能發(fā)生也可能不發(fā)生的事件,叫作相對(duì)于條件S的隨機(jī)事件. (5)確定事件和隨機(jī)事件統(tǒng)稱為事件,一般用大寫字母A,B,C…
2、表示. 2.頻率與概率 在相同的條件下,大量重復(fù)進(jìn)行同一試驗(yàn)時(shí),隨機(jī)事件A發(fā)生的頻率會(huì)在某個(gè)常數(shù)附近擺動(dòng),即隨機(jī)事件A發(fā)生的頻率具有穩(wěn)定性.這時(shí),我們把這個(gè)常數(shù)叫作隨機(jī)事件A的概率.記作P(A). 3.事件的關(guān)系與運(yùn)算 互斥事件:在一個(gè)隨機(jī)試驗(yàn)中,我們把一次試驗(yàn)下不能同時(shí)發(fā)生的兩個(gè)事件A與B稱作互斥事件. 事件A+B:事件A+B發(fā)生是指事件A和事件B至少有一個(gè)發(fā)生. 對(duì)立事件:不會(huì)同時(shí)發(fā)生,并且一定有一個(gè)發(fā)生的事件是相互對(duì)立事件. 4.概率的幾個(gè)基本性質(zhì) (1)概率的取值范圍:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F
3、)=0. (4)互斥事件概率的加法公式. ①如果事件A與事件B互斥,則P(A∪B)=P(A)+P(B); ②若事件B與事件A互為對(duì)立事件,則P(A)=1-P(B). [知識(shí)拓展] 1.必然事件的概率為1,但概率為1的事件不一定是必然事件. 2.不可能事件的概率為0,但概率為0的事件不一定是不可能事件. 3.互斥事件與對(duì)立事件的區(qū)別與聯(lián)系 互斥事件與對(duì)立事件都是兩個(gè)事件的關(guān)系,互斥事件是不可能同時(shí)發(fā)生的兩個(gè)事件,而對(duì)立事件除要求這兩個(gè)事件不同時(shí)發(fā)生外,還要求二者之一必須有一個(gè)發(fā)生,因此,對(duì)立事件是互斥事件的特殊情況,而互斥事件未必是對(duì)立事件. [基本能力自測(cè)] 1.(
4、思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“”) (1)事件發(fā)生的頻率與概率是相同的.( ) (2)在大量的重復(fù)實(shí)驗(yàn)中,概率是頻率的穩(wěn)定值.( ) (3)6張獎(jiǎng)券中只有一張有獎(jiǎng),甲、乙先后各抽取一張,則甲中獎(jiǎng)的概率小于乙中獎(jiǎng)的概率.( ) [答案] (1) (2)√ (3) 2.(教材改編)袋中裝有3個(gè)白球,4個(gè)黑球,從中任取3個(gè)球,則①恰有1個(gè)白球和全是白球;②至少有1個(gè)白球和全是黑球;③至少有1個(gè)白球和至少有2個(gè)白球;④至少有1個(gè)白球和至少有1個(gè)黑球. 在上述事件中,是對(duì)立事件的為( ) A.① B.② C.③ D
5、.④ B [至少有1個(gè)白球和全是黑球不同時(shí)發(fā)生,且一定有一個(gè)發(fā)生,∴②中兩事件是對(duì)立事件.] 3.(20xx天津高考)甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿? ) A. B. C. D. A [事件“甲不輸”包含“和棋”和“甲獲勝”這兩個(gè)互斥事件,所以甲不輸?shù)母怕蕿椋?] 4.(20xx天津模擬)經(jīng)統(tǒng)計(jì),在銀行一個(gè)營業(yè)窗口每天上午9點(diǎn)鐘排隊(duì)等候的人數(shù)及相應(yīng)概率如下表: 排隊(duì)人數(shù) 0 1 2 3 4 ≥5 概率 0.1 0.16 0.3 0.3 0.1 0.04 則該營業(yè)窗口上午9點(diǎn)鐘
6、時(shí),至少有2人排隊(duì)的概率是________. 0.74 [由表格可得至少有2人排隊(duì)的概率P=1-0.1-0.16=0.74.] 5.一個(gè)人打靶時(shí)連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是________.(填序號(hào)) 【導(dǎo)學(xué)號(hào):00090346】 ①至多有一次中靶;②兩次都中靶;③只有一次中靶;④兩次都不中靶. ④ (對(duì)應(yīng)學(xué)生用書第149頁) 隨機(jī)事件間的關(guān)系 (20xx深圳模擬)從1,2,3,4,5這五個(gè)數(shù)中任取兩個(gè)數(shù),其中:①恰有一個(gè)是偶數(shù)和恰有一個(gè)是奇數(shù);②至少有一個(gè)是奇數(shù)和兩個(gè)都是奇數(shù);③至少有一個(gè)是奇數(shù)和兩個(gè)都是偶數(shù);④至少有一個(gè)是奇數(shù)和至少有一
7、個(gè)是偶數(shù).上述事件中,是對(duì)立事件的是( ) A.① B.②④ C.③ D.①③ C [從1,2,3,4,5這五個(gè)數(shù)中任取兩個(gè)數(shù)有3種情況:一奇一偶,兩個(gè)奇數(shù),兩個(gè)偶數(shù),其中“至少有一個(gè)是奇數(shù)”包含一奇一偶或兩個(gè)奇數(shù)這兩種情況,它與兩個(gè)都是偶數(shù)是對(duì)立事件. 又①②④中的事件可以同時(shí)發(fā)生,不是對(duì)立事件.] [規(guī)律方法] 1.本題中準(zhǔn)確理解恰有兩個(gè)奇數(shù)(偶數(shù)),一奇一偶,至少有一個(gè)奇數(shù)(偶數(shù))是求解的關(guān)鍵,必要時(shí)可把所有試驗(yàn)結(jié)果寫出來,看所求事件包含哪些試驗(yàn)結(jié)果,從而斷定所給事件的關(guān)系. 2.準(zhǔn)確把握互斥事件與對(duì)立事件的概念. (1)互斥事件是不
8、可能同時(shí)發(fā)生的事件,但可以同時(shí)不發(fā)生. (2)對(duì)立事件是特殊的互斥事件,特殊在對(duì)立的兩個(gè)事件有且僅有一個(gè)發(fā)生. [變式訓(xùn)練1] 口袋里裝有1紅,2白,3黃共6個(gè)形狀相同的小球,從中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1個(gè)黃球”,C=“取出的2球至少有1個(gè)白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1個(gè)白球”.下列判斷中正確的序號(hào)為________. ①A與D為對(duì)立事件;②B與C是互斥事件;③C與E是對(duì)立事件;④P(C∪E)=1;⑤P(B)=P(C). ①④ [當(dāng)取出的2個(gè)球中一黃一白時(shí),B與C都發(fā)生,②不正確.當(dāng)取出的2個(gè)球中恰有一個(gè)白球時(shí)
9、,事件C與E都發(fā)生,則③不正確.顯然A與D是對(duì)立事件,①正確;C∪E為必然事件,④正確.由于P(B)=,P(C)=,所以⑤不正確.] 隨機(jī)事件的頻率與概率 (20xx全國卷Ⅲ)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
10、最高氣溫 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天數(shù) 2 16 36 25 7 4 以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率. (1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率; (2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率. [解] (1)這種酸奶一天的需求量不超過300瓶,當(dāng)且僅當(dāng)最高氣溫低于25,由表格數(shù)據(jù)知,最高氣溫低于25的頻率為=0.6,所以這種酸奶一天的需求量不超過30
11、0瓶的概率的估計(jì)值為0.6. 3分 (2)當(dāng)這種酸奶一天的進(jìn)貨量為450瓶時(shí), 若最高氣溫不低于25,則Y=6450-4450=900; 5分 若最高氣溫位于區(qū)間[20,25),則Y=6300+2(450-300)-4450=300; 7分 若最高氣溫低于20,則Y=6200+2(450-200)-4450=-100, 9分 所以,Y的所有可能值為900,300,-100. 10分 Y大于零當(dāng)且僅當(dāng)最高氣溫不低于20,由表格數(shù)據(jù)知,最高氣溫不低于20的頻率為=0.8,因此Y大于零的概率的估計(jì)值為0.8. 12分 [規(guī)律方法] 1.解題的關(guān)鍵是根據(jù)統(tǒng)計(jì)圖表分析
12、滿足條件的事件發(fā)生的頻數(shù),計(jì)算頻率,用頻率估計(jì)概率. 2.頻率反映了一個(gè)隨機(jī)事件出現(xiàn)的頻繁程度,頻率是隨機(jī)的,而概率是一個(gè)確定的值,通常用概率來反映隨機(jī)事件發(fā)生的可能性的大小,通過大量的重復(fù)試驗(yàn),事件發(fā)生的頻率會(huì)逐漸趨近于某一個(gè)常數(shù)(概率),因此有時(shí)也用頻率來作為隨機(jī)事件概率的估計(jì)值. [變式訓(xùn)練2] (20xx全國卷Ⅱ)某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下: 【導(dǎo)學(xué)號(hào):00090347】 上年度出險(xiǎn)次數(shù) 0 1 2 3 4 ≥5 保費(fèi) 0.85a a 1.25a
13、1.5a 1.75a 2a 隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表: 出險(xiǎn)次數(shù) 0 1 2 3 4 ≥5 頻數(shù) 60 50 30 30 20 10 (1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值; (2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值; (3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值. [解] (1)事件A發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)小于2.由所給數(shù)據(jù)知,一年內(nèi)出險(xiǎn)次數(shù)小于2的頻率為=0.55,故P(A)的估計(jì)值為0.55. 4分
14、 (2)事件B發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1且小于4.由所給數(shù)據(jù)知,一年內(nèi)出險(xiǎn)次數(shù)大于1且小于4的頻率為=0.3,故P(B)的估計(jì)值為0.3. 8分 (3)由所給數(shù)據(jù)得 保費(fèi) 0.85a a 1.25a 1.5a 1.75a 2a 頻率 0.30 0.25 0.15 0.15 0.10 0.05 10分 調(diào)查的200名續(xù)保人的平均保費(fèi)為0.85a0.30+a0.25+1.25a0.15+1.5a0.15+1.75a0.10+2a0.05=1.192 5A. 因此,續(xù)保人本年度平均保費(fèi)的估計(jì)值為1.192 5A. 12分 互斥事件與對(duì)立事
15、件的概率 某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示. 一次購物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顧客數(shù)(人) x 30 25 y 10 結(jié)算時(shí)間 (分鐘/人) 1 1.5 2 2.5 3 已知這100位顧客中一次購物量超過8件的顧客占55%. (1)確定x,y的值,并估計(jì)顧客一次購物的結(jié)算時(shí)間的平均值; (2)求一位顧客一次購物的結(jié)算時(shí)間不超過2分鐘的概率.(將頻率視為概率). [解] (1)由題意,得 解得x=15,且y=20.
16、 2分 該超市所有顧客一次性購物的結(jié)算時(shí)間組成一個(gè)總體,100位顧客一次購物的結(jié)算時(shí)間視為總體的一個(gè)容量為100的簡(jiǎn)單隨機(jī)抽樣,顧客一次購物的結(jié)算時(shí)間的平均值可用樣本平均數(shù)估計(jì). 又==1.9, ∴估計(jì)顧客一次購物的結(jié)算時(shí)間的平均值為1.9分鐘. 5分 (2)設(shè)B,C分別表示事件“一位顧客一次購物的結(jié)算時(shí)間分別為2.5分鐘、3分鐘”.設(shè)A表示事件“一位顧客一次購物的結(jié)算時(shí)間不超過2分鐘的概率.” 7分 將頻率視為概率,得 P(B)==,P(C)==. ∵B,C互斥,且=B+C, ∴P()=P(B+C)=P(B)+P(C)=+=, 10分 因此P(A)=1-
17、P()=1-=, ∴一位顧客一次購物結(jié)算時(shí)間不超過2分鐘的概率為0.7. 12分 [規(guī)律方法] 1.(1)求解本題的關(guān)鍵是正確判斷各事件的關(guān)系,以及把所求事件用已知概率的事件表示出來. (2)結(jié)算時(shí)間不超過2分鐘的事件,包括結(jié)算時(shí)間為2分鐘的情形,否則會(huì)計(jì)算錯(cuò)誤. 2.求復(fù)雜的互斥事件的概率一般有兩種方法:一是直接求解法,將所求事件的概率分解為一些彼此互斥的事件的概率再求和;二是間接法,先求該事件的對(duì)立事件的概率,再由P(A)=1-P()求解.當(dāng)題目涉及“至多”“至少”型問題,多考慮間接法. [變式訓(xùn)練3] 某商場(chǎng)有獎(jiǎng)銷售中,購滿100元商品得1張獎(jiǎng)券,多購多得.1 000張
18、獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,B,C,求: (1)P(A),P(B),P(C); (2)1張獎(jiǎng)券的中獎(jiǎng)概率; (3)1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率. [解] (1)P(A)=,P(B)==, 2分 P(C)==. 故事件A,B,C的概率分別為,,. 5分 (2)1張獎(jiǎng)券中獎(jiǎng)包含中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng).設(shè)“1張獎(jiǎng)券中獎(jiǎng)”這個(gè)事件為M,則M=A∪B∪C. ∵A,B,C兩兩互斥, ∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C) ==, 8分 故1張獎(jiǎng)券的中獎(jiǎng)概率約為. (3)設(shè)“1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)”為事件N,則事件N與“1張獎(jiǎng)券中特等獎(jiǎng)或中一等獎(jiǎng)”為對(duì)立事件, ∴P(N)=1-P(A∪B)=1-=, 故1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率為. 12分
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭(zhēng)當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長(zhǎng)會(huì)長(zhǎng)長(zhǎng)的路慢慢地走