高考數(shù)學(xué)復(fù)習(xí):第十章 :第六節(jié)幾何概型回扣主干知識提升學(xué)科素養(yǎng)

上傳人:仙*** 文檔編號:40906869 上傳時(shí)間:2021-11-18 格式:DOC 頁數(shù):4 大小:274.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)復(fù)習(xí):第十章 :第六節(jié)幾何概型回扣主干知識提升學(xué)科素養(yǎng)_第1頁
第1頁 / 共4頁
高考數(shù)學(xué)復(fù)習(xí):第十章 :第六節(jié)幾何概型回扣主干知識提升學(xué)科素養(yǎng)_第2頁
第2頁 / 共4頁
高考數(shù)學(xué)復(fù)習(xí):第十章 :第六節(jié)幾何概型回扣主干知識提升學(xué)科素養(yǎng)_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)復(fù)習(xí):第十章 :第六節(jié)幾何概型回扣主干知識提升學(xué)科素養(yǎng)》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí):第十章 :第六節(jié)幾何概型回扣主干知識提升學(xué)科素養(yǎng)(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、△+△2019年數(shù)學(xué)高考教學(xué)資料△+△ 第六節(jié) 幾 何 概 型 【考綱下載】 1.了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率. 2.了解幾何概型的意義. 1.幾何概型 如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型. 2.幾何概型的概率公式 P(A)=. 1.幾何概型有什么特點(diǎn)? 提示:(1)無限性:試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限個(gè).(2)等可能性:每個(gè)基本事件出現(xiàn)的可能性相等. 2.幾何概型和古典概型有什么區(qū)別? 提示:幾何概型和古典概型中基本事件發(fā)生的可能

2、性都是相等的,但古典概型的基本事件有有限個(gè),而幾何概型的基本事件有無限個(gè). 1.(2014漳州模擬)在區(qū)間[20,80]內(nèi)隨機(jī)取一實(shí)數(shù)a,則實(shí)數(shù)a屬于區(qū)間[50,75]的概率是(  ) A. B. C. D. 解析:選C 顯然,該問題屬于幾何概型,實(shí)數(shù)a屬于區(qū)間[50,75]的概率為==. 2.已知地鐵列車每10 min(含在車站停車時(shí)間)一班,在車站停1 min,則乘客到達(dá)站臺立即乘上車的概率是(  ) A. B. C. D. 解析:選A 試驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域長度為10 min,而構(gòu)成所

3、求事件的區(qū)域長度為1 min,故P=.[來源:] 3.有四個(gè)游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會,應(yīng)選擇的游戲盤是(  ) [來源:] 解析:選A 選項(xiàng)A的概率為;選項(xiàng)B的概率為=;選項(xiàng)C的概率為=;選項(xiàng)D的概率為,故增加中獎(jiǎng)機(jī)會的應(yīng)為A選項(xiàng).[來源:] 4.點(diǎn)A為周長等于3的圓周上一個(gè)定點(diǎn),若在該圓周上隨機(jī)取一點(diǎn)B,則劣弧的長度小于1的概率為________. 解析:劣弧的長度為,其中長度小于1的概率為=. 答案: 5.如圖所示,矩形長為6,寬為4,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在橢圓外的黃豆數(shù)為96,以此

4、試驗(yàn)數(shù)據(jù)為依據(jù)可以估計(jì)橢圓的面積為________. 解析:由隨機(jī)模擬的思想方法,可得黃豆落在橢圓內(nèi)的概率為=0.68. 由幾何概型的概率計(jì)算公式,可得=0.68, 而S矩形=64=24,則S橢圓=0.6824=16.32. 答案:16.32 前沿?zé)狳c(diǎn)(十七) 幾何概型與線性規(guī)劃問題的交匯 1.幾何概型常常與構(gòu)成該事件區(qū)域的長度、面積、體積或角度等有關(guān),在高考中經(jīng)常涉及面積區(qū)域的問題,而面積區(qū)域的確定又與線性規(guī)劃有關(guān).因此,高考命題常常在此交匯.[來源:] 2.因?yàn)槊娣e經(jīng)常涉及一個(gè)封閉圖,解題時(shí)一定要注意各邊界對應(yīng)的直線(或曲線)方程,各端點(diǎn)的坐標(biāo),求面積時(shí),還

5、要注意對圖形的分割等. [典例] (2012北京高考)設(shè)不等式組表示的平面區(qū)域?yàn)镈.在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是(  )[來源:]                       A. B. C. D. [解題指導(dǎo)] 先畫出平面區(qū)域D,再找出幾何區(qū)域的形狀,分析其幾何概型所對應(yīng)的量,然后解決問題. [解析] 不等式組表示坐標(biāo)平面內(nèi)的一個(gè)正方形區(qū)域,設(shè)區(qū)域內(nèi)點(diǎn)的坐標(biāo)為(x,y),則在區(qū)域內(nèi)取點(diǎn),此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2表示的區(qū)域就是圓x2+y2=4的外部,即圖中的陰影部分,故所求的概率為. [答

6、案] D [名師點(diǎn)評] 1.本題有以下創(chuàng)新點(diǎn): (1)考查方式的創(chuàng)新:由常規(guī)方式轉(zhuǎn)換為以線性規(guī)劃為載體考查幾何概型的計(jì)算; (2)考查內(nèi)容的創(chuàng)新:本題將幾何概型與線性規(guī)劃及圓求面積完美結(jié)合起來,角度獨(dú)特,形式新穎,又不失綜合性. 2.在解決以幾何概型為背景的創(chuàng)新交匯問題時(shí),應(yīng)注意以下兩點(diǎn): (1)要準(zhǔn)確判斷一種概率模型是否是幾何概型,為此必須了解幾何概型的含義及特征; (2)運(yùn)用幾何概型的概率公式時(shí),要注意驗(yàn)證事件是否具備等可能性. 已知實(shí)數(shù)x∈[-1,1],y∈[0,2],則點(diǎn)P(x,y)落在區(qū)域內(nèi)的概率為(  ) A. B. C. D. 解析:選B 不等式組表示的平面區(qū)域如圖所示(陰影部分),其面積為32-31=,則所求概率為=. 高考數(shù)學(xué)復(fù)習(xí)精品 高考數(shù)學(xué)復(fù)習(xí)精品

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!