《鴿巢原理》教學(xué)設(shè)計(jì)(總8頁)
《《鴿巢原理》教學(xué)設(shè)計(jì)(總8頁)》由會(huì)員分享,可在線閱讀,更多相關(guān)《《鴿巢原理》教學(xué)設(shè)計(jì)(總8頁)(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、《鴿巢原理》教學(xué)設(shè)計(jì) 【教學(xué)內(nèi)容】: 人教版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書●數(shù)學(xué)》六年級(jí)(下冊)第四單元數(shù)學(xué)廣角“鴿巢原理”第70、71頁的內(nèi)容。 【教材分析】: “數(shù)學(xué)廣角”是人教版六年級(jí)下冊第五單元的內(nèi)容。在數(shù)學(xué)問題中,有一類與“存在性”有關(guān)的問題,如任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。在這類問題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說明通過什么方式把這個(gè)存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢原理”。本節(jié)課教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情境,介紹了一類較簡單的“鴿巢原理”,
2、即把m個(gè)物體任意分放進(jìn)n個(gè)空鴿巢里(m>n,n是非0自然數(shù)),那么一定有一個(gè)鴿巢中放進(jìn)了至少2個(gè)物體。關(guān)于這類問題,學(xué)生在現(xiàn)實(shí)生活中已積累了一定的感性經(jīng)驗(yàn)。教學(xué)時(shí)可以充分利用學(xué)生的生活經(jīng)驗(yàn),放手讓學(xué)生自主思考,先采用自己的方法進(jìn)行“證明”,然后再進(jìn)行交流,在交流中引導(dǎo)學(xué)生對“枚舉法”、“反證法”、“假設(shè)法”等方法進(jìn)行比較,使學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來思考問題,發(fā)展學(xué)生的抽象思維能力。讓學(xué)生通過本內(nèi)容的學(xué)習(xí),幫助學(xué)生加深理解,學(xué)會(huì)利用“鴿巢問題”解決簡單的實(shí)際問題。在此過程中,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程。實(shí)際上,通過“說理”的方式來理解“鴿巢原理”的過程就是一種數(shù)學(xué)證明的雛形,有助
3、于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。還要注意培養(yǎng)學(xué)生的“模型”思想,這個(gè)過程是將具體問題“數(shù)學(xué)化”的過程,能從紛繁的現(xiàn)實(shí)素材中找出最本質(zhì)的數(shù)學(xué)模型,是體現(xiàn)學(xué)生數(shù)學(xué)思維和能力的重要方面。 【學(xué)情分析】: 鴿巢原理是學(xué)生從未接觸過的新知識(shí),難以理解鴿巢原理的真正含義,發(fā)現(xiàn)有相當(dāng)多的學(xué)生他們自己提前先學(xué)了,在具體分的過程中,都在運(yùn)用平均分的方法,也能就一個(gè)具體的問題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。有時(shí)要找到實(shí)際問題與“鴿巢原理”之間的聯(lián)系并不容易,即使找到了,也很難確定用什么作為“鴿巢”,要用幾個(gè)“
4、鴿巢”。 1.年齡特點(diǎn):六年級(jí)學(xué)生既好動(dòng)又內(nèi)斂,教師一方面要適當(dāng)引導(dǎo),引發(fā)學(xué)生的學(xué)習(xí)興趣,使他們的注意力始終集中在課堂上;另一方面要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解, 發(fā)揮學(xué)生學(xué)習(xí)的主體性。 2.思維特點(diǎn):知識(shí)掌握上,六年級(jí)的學(xué)生對于總結(jié)規(guī)律的方法接觸比較少,尤其對于“數(shù)學(xué)證明”。因此,教師要耐心細(xì)致的引導(dǎo),重在讓學(xué)生經(jīng)歷知識(shí)的發(fā)生、發(fā)展和過程,而不是生搬硬套,只求結(jié)論,要讓學(xué)生不知其然,更要知其所以然。 【教學(xué)目標(biāo)】: 1.知識(shí)與能力目標(biāo): 經(jīng)歷“鴿巢原理”的探究過程,初步了解“鴿巢原理”,會(huì)用“鴿巢原理”解決簡單的實(shí)際問題。通過猜測、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),建立數(shù)學(xué)模型,發(fā)
5、現(xiàn)規(guī)律。滲透“建?!彼枷搿? 2.過程與方法目標(biāo): 經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。 3.情感、態(tài)度與價(jià)值觀目標(biāo): 通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。 【教學(xué)重點(diǎn)】: 經(jīng)歷“鴿巢原理”的探究過程,初步了解“鴿巢原理”。 【教學(xué)難點(diǎn)】: 理解“鴿巢原理”,并對一些簡單實(shí)際問題加以“模型化”。 【教學(xué)準(zhǔn)備】: 多媒體課件、撲克牌、盒子、鉛筆、書、練習(xí)紙。 【設(shè)計(jì)理念】: 1.用具體的操作,將抽象變?yōu)橹庇^。 “總有一個(gè)文具盒中至少放進(jìn)2支鉛筆”這句話對于學(xué)生而言,不僅說起來生澀拗
6、口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”,二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個(gè)文具盒中至少放進(jìn)2支鉛筆”這種現(xiàn)象,讓學(xué)生理解這句話。 2.充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。 學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生手去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。 3.適當(dāng)把握教學(xué)要求。 我
7、們的教學(xué)不同于民間的培優(yōu)機(jī)構(gòu),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“鴿巢”和“物體”。 【教學(xué)過程】: 一、游戲激趣,初步體驗(yàn)。 在上課前,我們先熱熱身,一起玩搶椅子游戲好嗎?誰愿意參加?請五位同學(xué)到前面來,這有四把椅子,老師說:開始!你們幾個(gè)都要坐到椅子上。聽明白了嗎?好開始。告訴老師他們坐下了嗎?老師不用看,就知道一定有一把椅子上至少做了兩名同學(xué)。對嗎?假設(shè)請這五位同學(xué)再反復(fù)坐幾次,老師還敢肯定地說,不管怎么做,總有一把椅子上至少坐了兩個(gè)同學(xué),你們相信嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,想不想研究??? 二、操作探究,發(fā)現(xiàn)規(guī)律。 (一)經(jīng)歷“鴿巢
8、原理”的探究過程,理解原理。 1.自主猜想,初步感知。(提出問題) 把4枝鉛筆放進(jìn)3個(gè)文具盒中。不管怎么放,總有一個(gè)杯子至少放進(jìn)( ?。└“?。讓學(xué)生猜測“至少會(huì)是”幾根? 2.驗(yàn)證結(jié)論。 不管學(xué)生猜測的結(jié)論是什么,教師都必須要求學(xué)生借助實(shí)物進(jìn)行操作,來驗(yàn)證結(jié)論。學(xué)生以小組為單位進(jìn)行操作和交流時(shí),教師深入了解學(xué)生操作情況,找出列舉所有情況的學(xué)生。 (1)先請列舉所有情況的學(xué)生進(jìn)行匯報(bào),一說明列舉的不同情況,二結(jié)合操作說明自己的結(jié)論。(教師根據(jù)學(xué)生的回答板書所有的情況) 學(xué)生匯報(bào)完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾根小棒被放進(jìn)了同一個(gè)杯子。 (2)提出問題。 不用
9、一一列舉,想一想還有其它的方法來證明這個(gè)結(jié)論嗎? 學(xué)生匯報(bào)了自己的方法后,教師圍繞假設(shè)法,組織學(xué)生展開討論:為什么每個(gè)杯子里都要放1根小棒呢?請相互之間討論一下。 在討論的基礎(chǔ)上,教師小結(jié):假如每個(gè)杯子放入一根小棒,剩下的一根還要放進(jìn)一個(gè)杯子里,無論放在哪個(gè)杯子里,一定能找到一個(gè)杯子里至少有2根小棒。只有平均分才能將小棒盡可能的分散,保證“至少”的情況。 (3)初步觀察規(guī)律。 教師繼續(xù)提問:如果把 6支鉛筆放進(jìn)5個(gè)文具盒里呢?還用擺嗎?結(jié)果是否一樣?怎樣解釋這一現(xiàn)象? (6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。) 把7支鉛筆放進(jìn)6個(gè)文具盒里呢? 把8枝筆
10、放進(jìn)7個(gè)盒子里呢? 把9枝筆放進(jìn)8個(gè)盒子里呢?…… …… 100支鉛筆放進(jìn)99個(gè)文具盒呢? 教師引導(dǎo)學(xué)生進(jìn)行比較:你發(fā)現(xiàn)什么? (筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。) 師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。 (二)進(jìn)一步認(rèn)識(shí)和理解“鴿巢原理”。 1.?dāng)?shù)量積累,發(fā)現(xiàn)方法。 出示第70頁做一做,讓學(xué)生運(yùn)用簡單的鴿巢原理解決問題。在說理的過程中重點(diǎn)關(guān)注“余下的2只鴿子”如何分配? 讓學(xué)生進(jìn)行自主學(xué)習(xí)活動(dòng)(獨(dú)立思考 自主探究),教師再結(jié)合課件進(jìn)行演示: 2.深入探究,尋找規(guī)律。 剛才是鉛筆數(shù)比文具盒數(shù)多1枝的情況,現(xiàn)
11、在鴿子數(shù)比鴿舍要多2只,為什么還是“至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里”? 3.發(fā)現(xiàn)規(guī)律,初步建模。 我們將小棒、鴿子看做物體,杯子、鴿舍看做鴿巢,觀察物體數(shù)和鴿巢數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語言描述,只要大概意思正確即可) 小結(jié):只要物體數(shù)量比鴿巢的數(shù)量多,總有一個(gè)鴿巢至少放進(jìn)2個(gè)物體。這就叫做鴿巢原理。 (三)應(yīng)用“鴿巢原理”,感受數(shù)學(xué)的魅力。 1.看有關(guān)鴿巢原理資料,讓學(xué)生感受古代數(shù)學(xué)文化。 “鴿巢原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可
12、以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。 2.鴿巢原理的應(yīng)用。 (1)出示71頁的例2:把5本書放進(jìn)2個(gè)鴿巢中,不管怎么放,總有一個(gè)鴿巢至少放進(jìn)3本書。如果一共有7本書呢?9本書呢? (2)讓學(xué)生獨(dú)立思考、再小組內(nèi)討論: A、該如何解決這個(gè)問題呢? B、如何用一個(gè)式子表示呢? C、你又發(fā)現(xiàn)了什么規(guī)律? (3)匯報(bào)討論結(jié)果,同時(shí)教師進(jìn)行板書: 52=2……1 2+1=3(本) 72=3……1 3+1=4(本) 92=4……1 4+1=5(本) (4)思
13、考、討論:總有一個(gè)鴿巢至少放進(jìn)的本數(shù)是“商+1”還是“商+余數(shù)”呢?為什么? 師讓學(xué)生討論得出正確的結(jié)論:總有一個(gè)鴿巢至少放進(jìn)的本數(shù)是“商+1”。 3.解決問題。 (1)如果我們用數(shù)學(xué)書的本數(shù)除以鴿巢數(shù),所得的余數(shù)不是1,該怎么辦呢?請看下面的題目。教師出示課本71頁的“做一做”: 8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么? (2)在這道題中,可以把什么當(dāng)作鴿巢?可以把什么當(dāng)作剛才的課本?讓學(xué)生思考得出: (3)學(xué)生獨(dú)立完成解答。 (四)進(jìn)一步應(yīng)用原理解決問題。(游戲) 我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要
14、求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?( 2張/因?yàn)?4=1……1) 教師可以先驗(yàn)證一下學(xué)生的猜測:舉牌驗(yàn)證。 如有3張同花色的,符合你們的猜測嗎? 如果9個(gè)人每一個(gè)人抽一張呢?(至少有3張牌是同一花色,因?yàn)?4=2…1) 三、鞏固應(yīng)用。 1.算一算。向東小學(xué)六年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么? (1)六年級(jí)里至少有兩人的生日是同一天。 (2)六(2)班中至少有5人是同一個(gè)月出生的。 2.說一說。張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么? 四、全課
15、小結(jié)。 說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識(shí)? (師生共同對本節(jié)課的內(nèi)容進(jìn)行小結(jié)) 五、課外作業(yè)。 課本73頁練習(xí)十二第2、4題。 六、板書設(shè)計(jì)。 數(shù)學(xué)廣角——鴿巢原理 物體數(shù)鴿巢數(shù)=商……余數(shù) 至少數(shù) =商+1 5 2 =2……1 3 =2+1 7 2 =3……1 4 =3+1 9 2 =4……1 5 =4+1 8 3 =2……2 3 =2+1 370365 =1……5 2 =1+1 4912 =4……1
16、 5 =4+1 〖設(shè)計(jì)意圖〗:這樣的板書設(shè)計(jì)是在教學(xué)過程中動(dòng)態(tài)生成的,按講思路來安 排的,力求簡潔精練。這樣設(shè)計(jì)便于學(xué)生對本課知識(shí)的理解與記憶,突出了的教學(xué)重點(diǎn),使板書真正起到畫龍點(diǎn)睛的作用。 【教學(xué)反思】: 本節(jié)課的內(nèi)容是小學(xué)六年級(jí)下冊數(shù)學(xué)廣角的內(nèi)容。很多老師初一看這內(nèi)容,覺得本節(jié)課的內(nèi)容與生活無關(guān),沒有任何聯(lián)系。其實(shí),“鴿巢原理”在生活中的應(yīng)用很廣泛且靈活多變,可以解決一些看上去很復(fù)雜、覺得無從下手,卻又是相當(dāng)有趣的數(shù)學(xué)問題。但對于小學(xué)生來說,理解和掌握“鴿巢原理”還存在著一定的難度。所以,本節(jié)課根據(jù)學(xué)生的認(rèn)知特點(diǎn)和規(guī)律,我在設(shè)計(jì)時(shí)著眼于學(xué)生數(shù)學(xué)思維
17、的發(fā)展,通過猜測、驗(yàn)證、觀察、分析等活動(dòng),建立數(shù)學(xué)模型,滲透數(shù)學(xué)思想。 我覺得一堂好的數(shù)學(xué)課,應(yīng)該是原生態(tài)的、充滿“數(shù)學(xué)味”的課;課堂中教師應(yīng)該立足課堂,立足知識(shí)點(diǎn)。“創(chuàng)設(shè)情境---建立模型---解釋應(yīng)用”是新課程所倡導(dǎo)的教學(xué)模式。本節(jié)課的設(shè)計(jì)中,我運(yùn)用這一模式,創(chuàng)設(shè)了一些活動(dòng),讓學(xué)生通過活動(dòng),產(chǎn)生興趣,讓學(xué)生經(jīng)歷探究“鴿巢原理”的過程,初步了解了“鴿巢原理”,并能夠應(yīng)用于實(shí)際,學(xué)會(huì)思考數(shù)學(xué)問題的方法,培養(yǎng)了學(xué)生的數(shù)學(xué)思維。 在教學(xué)本內(nèi)容之后,本人反思本內(nèi)容的教學(xué),有如下幾點(diǎn)體會(huì): 一、情境的創(chuàng)設(shè)“目的化”。 創(chuàng)設(shè)情境,目的不是為了創(chuàng)設(shè)情,主要是目的是讓學(xué)生很快的排除外界及內(nèi)心因素的干
18、擾而進(jìn)入教學(xué)內(nèi)容,營造一個(gè)教學(xué)情境,幫助學(xué)生在廣泛的文化情境中學(xué)習(xí)探索,同時(shí)也是為新內(nèi)容的學(xué)習(xí)做好鋪墊。導(dǎo)入新課的目的是要引起學(xué)生在思想上產(chǎn)生學(xué)習(xí)新知識(shí)的愿望,產(chǎn)生一種需要認(rèn)識(shí)和學(xué)習(xí)的心理。我以“五人座四把椅子,總有一把椅子至少有兩人坐”的游戲?qū)胄抡n,激發(fā)學(xué)生的興趣,初步感受至少有兩位同學(xué)相同的現(xiàn)象,激發(fā)學(xué)習(xí)新知的欲望。 二、知識(shí)的探索“自主化”。 “鴿巢原理” 的理解對于小學(xué)生來說有著一定難度的。特別是對于“總有”、“至少”這兩個(gè)詞的理解。在探索知識(shí)時(shí),首先讓學(xué)生由“猜測——驗(yàn)證”的方法來構(gòu)建模型,再通過“數(shù)量積累,發(fā)現(xiàn)方法——深入探究,尋找規(guī)律——發(fā)現(xiàn)規(guī)律,初步建?!獙?shí)際應(yīng)用,解
19、決問題”。完全讓學(xué)生進(jìn)行自主探索,親身經(jīng)歷知識(shí)的形成過程,體現(xiàn)了自主化。 三、教學(xué)語言“簡單化”。 教學(xué),是一門學(xué)問,更是一門藝術(shù)。特別是數(shù)學(xué)這一門學(xué)科,課堂中,數(shù)學(xué)語言精簡性直接影響著學(xué)生對新知識(shí)的理解與掌握。例如,教材中“不管怎么放,總有一只鴿巢里至少放進(jìn)了幾個(gè)蘋果?”對于這句話,學(xué)生聽起來很拗口,也很難理解;通過思考,我將這句話變成“不管怎么放,至少有幾個(gè)蘋果放進(jìn)了同一個(gè)鴿巢中?”這樣對學(xué)生來說,相對顯的通俗易懂。因此,課堂教學(xué)中,教師應(yīng)嚴(yán)謹(jǐn)準(zhǔn)確地使用數(shù)學(xué)語言,善于發(fā)現(xiàn)并靈活掌握各種數(shù)學(xué)語言所描述的條件及其相互轉(zhuǎn)化,以加深對數(shù)學(xué)概念的理解和應(yīng)用。 以上就是本人對本內(nèi)容教學(xué)后所思考的幾方面,當(dāng)然,本內(nèi)容的設(shè)計(jì)還有很多值得商榷的地方,敬請?jiān)u閱的專家提出指導(dǎo)性意見。 【2010年東莞市小學(xué)數(shù)學(xué)教研會(huì)】 參 評 教 學(xué) 設(shè) 計(jì) 題目:《鴿巢原理》 姓 名: 楊 樂 單 位: 樟木頭鎮(zhèn)中心小學(xué) 聯(lián)系電話: 13711998241 9
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國有企業(yè)黨委書記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點(diǎn)節(jié)后常見的八大危險(xiǎn)
- 廈門城市旅游介紹廈門景點(diǎn)介紹廈門美食展示
- 節(jié)后開工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會(huì)應(yīng)急
- 預(yù)防性維修管理
- 常見閥門類型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案