浙江省2019年中考數(shù)學(xué) 第五單元 四邊形 課時(shí)訓(xùn)練25 特殊平行四邊形(二)練習(xí) (新版)浙教版

上傳人:優(yōu)*** 文檔編號(hào):29896863 上傳時(shí)間:2021-10-08 格式:DOC 頁(yè)數(shù):10 大小:372.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
浙江省2019年中考數(shù)學(xué) 第五單元 四邊形 課時(shí)訓(xùn)練25 特殊平行四邊形(二)練習(xí) (新版)浙教版_第1頁(yè)
第1頁(yè) / 共10頁(yè)
浙江省2019年中考數(shù)學(xué) 第五單元 四邊形 課時(shí)訓(xùn)練25 特殊平行四邊形(二)練習(xí) (新版)浙教版_第2頁(yè)
第2頁(yè) / 共10頁(yè)
浙江省2019年中考數(shù)學(xué) 第五單元 四邊形 課時(shí)訓(xùn)練25 特殊平行四邊形(二)練習(xí) (新版)浙教版_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《浙江省2019年中考數(shù)學(xué) 第五單元 四邊形 課時(shí)訓(xùn)練25 特殊平行四邊形(二)練習(xí) (新版)浙教版》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《浙江省2019年中考數(shù)學(xué) 第五單元 四邊形 課時(shí)訓(xùn)練25 特殊平行四邊形(二)練習(xí) (新版)浙教版(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 真誠(chéng)為您提供優(yōu)質(zhì)參考資料,若有不當(dāng)之處,請(qǐng)指正。 課時(shí)訓(xùn)練(二十五) 特殊平行四邊形(二) |夯實(shí)基礎(chǔ)| 1.[xx貴陽(yáng)] 如圖K25-1,在菱形ABCD中,E是AC的中點(diǎn),EF∥CB,交AB于點(diǎn)F,如果EF=3,那么菱形ABCD的周長(zhǎng)為 (  ) 圖K25-1 A.24 B.18 C.12 D.9 2.[xx寧夏] 將一個(gè)矩形紙片按如圖K25-2所示折疊,若∠1=40,則∠2的度數(shù)是 (  ) 圖K25-2 A.40 B.50 C.60 D.70 3.[xx恩施州] 如圖K25-3所示,在正方形ABCD中,G為CD邊中點(diǎn),連結(jié)AG并延長(zhǎng)交BC邊的延

2、長(zhǎng)線(xiàn)于E點(diǎn),對(duì)角線(xiàn)BD交AG于F點(diǎn),已知FG=2,則線(xiàn)段AE的長(zhǎng)度為 (  ) 圖K25-3 A.6 B.8 C.10 D.12 4.[xx蘭州] 在平行四邊形ABCD中,對(duì)角線(xiàn)AC與DB相交于點(diǎn)O.要使四邊形ABCD是正方形,還需添加一組條件.下面給出了四組條件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正確的序號(hào)是    . 5.[xx上海] 對(duì)于一個(gè)位置確定的圖形,如果它的所有點(diǎn)都在一個(gè)水平放置的矩形內(nèi)部或邊上,且該圖形與矩形的每條邊都至少有一個(gè)公共點(diǎn)(如圖K25-4①),那么這個(gè)矩形水平方向

3、的邊長(zhǎng)稱(chēng)為該圖形的寬,鉛垂方向的邊長(zhǎng)稱(chēng)為該圖形的高.如圖②,菱形ABCD的邊長(zhǎng)為1,邊AB水平放置.如果該菱形的高是寬的23,那么它的寬的值是    . 圖K25-4 6.如圖K25-5,AC是矩形ABCD的對(duì)角線(xiàn),AB=2,BC=23,點(diǎn)E,F分別是線(xiàn)段AB,AD上的點(diǎn),連結(jié)CE,CF,當(dāng)∠BCE=∠ACF,且CE=CF時(shí),AE+AF=    . 圖K25-5 7.如圖K25-6,在平行四邊形ABCD中,AB=3 cm,BC=5 cm,∠B=60,G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)F,連結(jié)CE,DF. (1)求證:四邊形CEDF是平行四邊形.

4、 (2)①當(dāng)AE=   cm時(shí),四邊形CEDF是矩形; ②當(dāng)AE=   cm時(shí),四邊形CEDF是菱形. (直接寫(xiě)出答案,不需要說(shuō)明理由) 圖K25-6 8.[xx吉林] 如圖K25-7①,在△ABC中,AB=AC,過(guò)AB上一點(diǎn)D作DE∥AC交BC于點(diǎn)E,以E為頂點(diǎn),ED為一邊,作∠DEF=∠A,另一邊EF交AC于點(diǎn)F. (1)求證:四邊形ADEF為平行四邊形; (2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),?ADEF的形狀為    ; (3)延長(zhǎng)圖①中的DE到點(diǎn)G,使EG=DE,連結(jié)AE,AG,FG,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說(shuō)明理由. 圖K25-7 |拓展提升| 9

5、.[xx海南] 如圖K25-8①,分別沿長(zhǎng)方形紙片ABCD和正方形紙片EFGH的對(duì)角線(xiàn)AC,EG剪開(kāi),拼成如圖②所示的?KLMN,若中間空白部分四邊形OPQR恰好是正方形,且?KLMN的面積為50,則正方形EFGH的面積為 (  ) 圖K25-8 A.24 B.25 C.26 D.27 10.[xx咸寧] 如圖K25-9,已知∠MON=120,點(diǎn)A,B分別在OM,ON上,且OA=OB=a,將射線(xiàn)OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OM,旋轉(zhuǎn)角為α(0<α<120且α≠60),作點(diǎn)A關(guān)于直線(xiàn)OM的對(duì)稱(chēng)點(diǎn)C,畫(huà)直線(xiàn)BC交OM于點(diǎn)D,連結(jié)AC,AD.有下列結(jié)論: 圖K25-9 ①AD=

6、CD;②∠ACD的大小隨著α的變化而變化;③當(dāng)α=30時(shí),四邊形OADC為菱形;④△ACD的面積的最大值為3a2. 其中正確的是    .(把你認(rèn)為正確結(jié)論的序號(hào)都填上) 11.[xx紹興] 小敏思考解決如下問(wèn)題: 原題:如圖K25-10①,點(diǎn)P,Q分別在菱形ABCD的邊BC,CD上,∠PAQ=∠B,求證:AP=AQ. (1)小敏進(jìn)行探索,若將點(diǎn)P,Q的位置特殊化:把∠PAQ繞點(diǎn)A旋轉(zhuǎn)得到∠EAF,使AE⊥BC,點(diǎn)E,F分別在邊BC,CD上,如圖②,此時(shí)她證明了AE=AF.請(qǐng)你證明. (2)受以上(1)的啟發(fā),在原題中,添加輔助線(xiàn):如圖③,作AE⊥BC,AF⊥CD,垂足分別為E,F.

7、請(qǐng)你繼續(xù)完成原題的證明. (3)如果在原題中添加條件:AB=4,∠B=60,如圖①.請(qǐng)你編制一個(gè)計(jì)算題(不標(biāo)注新的字母),并直接給出答案. 圖K25-10 參考答案 1.A 2.D [解析] 如下圖,易知2∠3=∠1+180=220,從而∠3=110,又由平行線(xiàn)的性質(zhì),得∠2+∠3=180,進(jìn)而∠2=70,故選D. 3.D [解析] ∵正方形ABCD,G為CD邊中點(diǎn), ∴AB∶DG=2∶1. ∵AB∥CD,∴AB∶DG=AF∶FG. ∵FG=2,∴AF=4. 易證△ADG≌△ECG, ∴EG=AG=AF+FG=4+2=6. ∴AE=12.故選D. 4.①③④ [解

8、析] ①有一個(gè)角是直角的平行四邊形是矩形,有一組鄰邊相等的矩形是正方形,故①正確. ②BD為平行四邊形的對(duì)角線(xiàn),AB為平行四邊形的其中一條邊,所以AB=BD時(shí),平行四邊形不可能是正方形,故②錯(cuò)誤. ③對(duì)角線(xiàn)相等且垂直的平行四邊形是正方形,由OB=OC,得AC=BD,由OB⊥OC,得AC⊥BD,所以四邊形ABCD為正方形,故③正確. ④鄰邊相等的平行四邊形是菱形,對(duì)角線(xiàn)相等的菱形是正方形.在平行四邊形ABCD中,由AB=AD,得四邊形ABCD為菱形,又∵AC=BD,∴四邊形ABCD為正方形.故④正確. 5.1813 [解析] 如圖,將菱形ABCD放置在一個(gè)水平矩形AFCE中,設(shè)寬AF為a

9、,則高CF為23a,因?yàn)榱庑蜛BCD的邊長(zhǎng)為1,所以BF為a-1,在Rt△BCF中,由勾股定理得(a-1)2+23a2=12,解得a=1813. 6.433 [解析] 如圖,作FG⊥AC,易證△BCE≌△GCF(AAS),∴BE=GF,BC=CG. ∵在Rt△ABC中,tan∠ACB=ABBC=223=33, ∴∠ACB=30,∴AC=2AB=4,∠DAC=∠ACB=30. ∵FG⊥AC,∴AF=2GF,∴AE+AF=AE+2BE=AB+BE. 設(shè)BE=x,在Rt△AFG中,AG=3GF=3x, ∴AC=AG+CG=3x+23=4, 解得x=433-2, ∴AE+AF=AB+B

10、E=2+433-2=433. 7.解:(1)證明:∵四邊形ABCD是平行四邊形, ∴CF∥ED,∴∠FCG=∠EDG. ∵G是CD的中點(diǎn),∴CG=DG. 在△FCG和△EDG中,∠FCG=∠EDG,CG=DG,∠CGF=∠DGE, ∴△FCG≌△EDG(ASA),∴FG=EG. 又∵CG=DG,∴四邊形CEDF是平行四邊形. (2)①當(dāng)AE=3.5 cm時(shí),四邊形CEDF是矩形. ②當(dāng)AE=2 cm時(shí),四邊形CEDF是菱形. 8.解:(1)證明:∵DE∥AC, ∴∠DEF=∠EFC. ∵∠DEF=∠A,∴∠A=∠EFC, ∴EF∥AB, ∴四邊形ADEF為平行四邊形.

11、 (2)菱形. 理由如下:∵點(diǎn)D為AB中點(diǎn), ∴AD=12AB. ∵DE∥AC,點(diǎn)D為AB中點(diǎn), ∴E為BC中點(diǎn),∴DE=12AC. ∵AB=AC,∴AD=DE, ∴平行四邊形ADEF為菱形. (3)四邊形AEGF為矩形. 理由:∵四邊形ADEF為平行四邊形, ∴AF∥DE,AF=DE,AD=EF. ∵EG=DE,∴AF=EG. 又∵AF∥EG, ∴四邊形AEGF是平行四邊形. ∵AD=AG,∴AG=EF, ∴四邊形AEGF為矩形. 9.B [解析] 設(shè)長(zhǎng)方形紙片長(zhǎng),寬分別為x,y,正方形紙片邊長(zhǎng)為z. ∵四邊形OPQR是正方形, ∴RQ=RO,∴x-z=z

12、-y,∴x=2z-y①; ∵?KLMN的面積為50,∴xy+z2+(z-y)2=50, 把①代入,得(2z-y)y+z2+(z-y)2=50, ∴2zy-y2+z2+z2-2yz+y2=50, 整理,得2z2=50,∴z2=25, ∴正方形EFGH的面積=z2=25,故選擇B. 10.①③④ [解析] 連結(jié)OC, ∵點(diǎn)A關(guān)于直線(xiàn)OM的對(duì)稱(chēng)點(diǎn)是點(diǎn)C,由對(duì)稱(chēng)性可得OA=OC,CD=AD,故①正確; ∵OA=OC,∴∠COD=∠AOD=α,由對(duì)稱(chēng)性可知OM垂直平分AC,∴∠OCA=90-α. ∵OA=OB,OA=OC,∴OB=OC. ∵∠BOC=120-2α, ∴∠BCO=30

13、+α, ∴∠BCA=90-α+30+α=120, ∴∠ACD=180-120=60,故②錯(cuò)誤; ∵CD=AD,∴△ACD為等邊三角形. 當(dāng)α=30時(shí),∠AOC=60∴△ACO為等邊三角形. ∴OC=OA=AC,又∠ACD=60,AD=CD, ∴AD=CD=AC. ∴OA=OC=CD=AD. ∴四邊形OADC為菱形.故③正確; 要使△ACD的面積最大即AC要最大,當(dāng)α=90,A,O,C在一條直線(xiàn)上時(shí),AC最大, ∴△ACD的面積的最大值為122a3a=3a2,故④正確. 11.[解析] (1)可先求出∠AFC=∠AFD=90,然后證明△AEB≌△AFD即可; (2)先求出

14、∠EAP=∠FAQ,再證明△AEP≌△AFQ即可; (3)可以分三個(gè)不同的層次,①直接求菱形本身其他內(nèi)角的度數(shù)或邊的長(zhǎng)度,也可求菱形的周長(zhǎng).②可求PC+CQ,BP+QD,∠APC+∠AQC的值.③可求四邊形APCQ的面積、△ABP與△AQD的面積和、四邊形APCQ周長(zhǎng)的最小值等. 解:(1)證明:如圖①, 在菱形ABCD中, ∠B+∠C=180,∠B=∠D,AB=AD, ∵∠EAF=∠B, ∴∠C+∠EAF=180, ∴∠AEC+∠AFC=180. ∵AE⊥BC, ∴∠AEB=∠AEC=90, ∴∠AFC=90,∠AFD=90, ∴△AEB≌△AFD,∴AE=AF.

15、 (2)證明:如圖②,∵∠PAQ=∠EAF=∠B, ∴∠EAP=∠EAF-∠PAF=∠PAQ-∠PAF=∠FAQ. ∵AE⊥BC,AF⊥CD, ∴∠AEP=∠AFQ=90. ∵AE=AF,∴△AEP≌△AFQ,∴AP=AQ. (3)答案不唯一,舉例如下: 層次1:①求∠D的度數(shù).答案:∠D=60. ②分別求∠BAD,∠BCD的度數(shù). 答案:∠BAD=∠BCD=120. ③求菱形ABCD的周長(zhǎng).答案:16. ④分別求BC,CD,AD的長(zhǎng).答案:4,4,4. 層次2:①求PC+CQ的值.答案:4. ②求BP+QD的值.答案:4. ③求∠APC+∠AQC的值.答案:180. 層次3:①求四邊形APCQ的面積.答案:43. ②求△ABP與△AQD的面積和.答案:43. ③求四邊形APCQ周長(zhǎng)的最小值. 答案:4+43. 10 / 10

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!