歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2019-2020年高中數(shù)學(xué) 2.5《平面向量應(yīng)用舉例》教學(xué)設(shè)計(jì) 新人教A版必修4.doc

  • 資源ID:2581175       資源大?。?span id="f77jbrj" class="font-tahoma">167KB        全文頁(yè)數(shù):6頁(yè)
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2019-2020年高中數(shù)學(xué) 2.5《平面向量應(yīng)用舉例》教學(xué)設(shè)計(jì) 新人教A版必修4.doc

2019-2020年高中數(shù)學(xué) 2.5平面向量應(yīng)用舉例教學(xué)設(shè)計(jì) 新人教A版必修4【教學(xué)目標(biāo)】1.通過(guò)應(yīng)用舉例,讓學(xué)生會(huì)用平面向量知識(shí)解決幾何問(wèn)題的兩種方法-向量法和坐標(biāo)法,可以用向量知識(shí)研究物理中的相關(guān)問(wèn)題的“四環(huán)節(jié)”和生活中的實(shí)際問(wèn)題;2.通過(guò)本節(jié)的學(xué)習(xí),讓學(xué)生體驗(yàn)向量在解決幾何和物理問(wèn)題中的工具作用,增強(qiáng)學(xué)生的積極主動(dòng)的探究意識(shí),培養(yǎng)創(chuàng)新精神. 【導(dǎo)入新課】回顧提問(wèn):(1)若O為重心,則+=.(2)水渠橫斷面是四邊形,=,且|=|,則這個(gè)四邊形為等腰梯形.類比幾何元素之間的關(guān)系,你會(huì)想到向量運(yùn)算之間都有什么關(guān)系?(3)兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力.為什么?教師:本節(jié)主要研究了用向量知識(shí)解決平面幾何和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決平面幾何和物理問(wèn)題的步驟,已經(jīng)布置學(xué)生們課前預(yù)習(xí)了這部分,檢查學(xué)生預(yù)習(xí)情況并讓學(xué)生把預(yù)習(xí)過(guò)程中的疑惑說(shuō)出來(lái).新授課階段探究一:()向量運(yùn)算與幾何中的結(jié)論若,則,且所在直線平行或重合相類比,你有什么體會(huì)?()由學(xué)生舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例教師:平移、全等、相似、長(zhǎng)度、夾角等幾何性質(zhì)可以由向量線性運(yùn)算及數(shù)量積表示出來(lái): 例如,向量數(shù)量積對(duì)應(yīng)著幾何中的長(zhǎng)度.如圖: 平行四邊行中,設(shè),,則(平移),(長(zhǎng)度)向量,的夾角為.因此,可用向量方法解決平面幾何中的一些問(wèn)題.通過(guò)向量運(yùn)算研究幾何運(yùn)算之間的關(guān)系,如距離、夾角等把運(yùn)算結(jié)果 “翻譯”成幾何關(guān)系本節(jié)課,我們就通過(guò)幾個(gè)具體實(shí)例,來(lái)說(shuō)明向量方法在平面幾何中的運(yùn)用例1 證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和已知:平行四邊形ABCD求證:分析:用向量方法解決涉及長(zhǎng)度、夾角的問(wèn)題時(shí),我們常常要考慮向量的數(shù)量積注意到, ,我們計(jì)算和證明:不妨設(shè)a,b,則a+b,a-b,|a|2,|b|2得( a+b)( a+b)= aa+ ab+ba+bb= |a|2+2ab+|b|2 同理,|a|2-2ab+|b|2 +得 2(|a|2+|b|2)=2()所以,平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和師:你能用幾何方法解決這個(gè)問(wèn)題嗎?讓學(xué)生體會(huì)幾何方法與向量方法的區(qū)別與難易情況.師:由于向量能夠運(yùn)算,因此它在解決某些幾何問(wèn)題時(shí)具有優(yōu)越性,他把一個(gè)思辨過(guò)程變成了一個(gè)算法過(guò)程,可以按照一定的程序進(jìn)行運(yùn)算操作,從而降低了思考問(wèn)題的難度.用向量方法解決平面幾何問(wèn)題,主要是下面三個(gè)步驟:建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系變式訓(xùn)練:中,D、E、F分別是AB、BC、CA的中點(diǎn),BF與CD交于點(diǎn)O,設(shè)(1)證明A、O、E三點(diǎn)共線;(2)用表示向量.例2 如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?分析:由于R、T是對(duì)角線AC上兩點(diǎn),所以要判斷AR、RT、TC之間的關(guān)系,只需要分別判斷AR、RT、TC與AC之間的關(guān)系即可解:設(shè)a,b,則a+b因?yàn)榕c共線,因此,存在實(shí)數(shù)m,使得=m(a+b)又因?yàn)榕c共線,因此存在實(shí)數(shù)n,使得=n= n(b- a)由= n,得m(a+b)= a+ n(b- a)整理得ab0由于向量a、b不共線,所以有解得所以同理 于是 所以 ARRTTC說(shuō)明:本例通過(guò)向量之間的關(guān)系闡述了平面幾何中的方法,待定系數(shù)法使用向量方法證明平面幾何問(wèn)題的常用方法探究二:(1)兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力.為什么?(2)在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力.為什么?師:向量在物理中的應(yīng)用,實(shí)際上就是把物理問(wèn)題轉(zhuǎn)化為向量問(wèn)題,然后通過(guò)向量運(yùn)算解決向量問(wèn)題,最后再用所獲得的結(jié)果解釋物理現(xiàn)象例3 在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?分析:上面的問(wèn)題可以抽象為如右圖所示的數(shù)學(xué)模型只要分析清楚F、G、三者之間的關(guān)系(其中F為F1、F2的合力),就得到了問(wèn)題的數(shù)學(xué)解釋解:不妨設(shè)|F1|=|F2|, 由向量加法的平行四邊形法則,物理的平衡原理以及直角三角形的指示,可以得到|F1|=通過(guò)上面的式子我們發(fā)現(xiàn),當(dāng)由逐漸變大時(shí),由逐漸變大,的值由大逐漸變小,因此,|F1|有小逐漸變大,即F1、F2之間的夾角越大越費(fèi)力,夾角越小越省力師:請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:為何值時(shí),|F1|最小,最小值是多少?|F1|能等于|G|嗎?為什么?例4 如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0.1min)?分析:如果水是靜止的,則船只要取垂直于對(duì)岸的方向行駛,就能使行駛航程最短,所用時(shí)間最短考慮到水的流速,要使船的行駛航程最短,那么船的速度與水流速度的合速度v必須垂直于對(duì)岸(用幾何畫板演示水流速度對(duì)船的實(shí)際航行的影響)解:=(km/h),所以, (min)答:行駛航程最短時(shí),所用的時(shí)間是3.1 min本例關(guān)鍵在于對(duì)“行駛最短航程”的意義的解釋,即“分析”中給出的船必須垂直于河岸行駛,這是船的速度與水流速度的合速度應(yīng)當(dāng)垂直于河岸,分析清楚這種關(guān)系后,本例就容易解決了.例5 已知 ,的夾角為60o,當(dāng)實(shí)數(shù)為何值時(shí),?解:若,得;若,得例6 如圖,ABCD為正方形,P是對(duì)角線DB上一點(diǎn),PECF為矩形,求證:PA=EF; PAEF. 解:以D為原點(diǎn),為x軸正方向建立直角坐標(biāo)系,則A(0,1), C:(1,0), B:(1,1). 故例7 如圖,矩形ABCD內(nèi)接于半徑為r的圓O,點(diǎn)P是圓周上任意一點(diǎn), 求證:PA2+PB2+PC2+PD2=8r2.證明:即例8 已知P為ABC內(nèi)一點(diǎn),且345延長(zhǎng)AP交BC于點(diǎn)D,若,用、表示向量、解:, ,又 345, 34()5(),化簡(jiǎn),得 設(shè)t(tR),則t t 又設(shè) k(kR),由 ,得 k()而 , k()(1k)k. 由,得解得 t 將之代入,有課堂小結(jié)利用向量的方法解決平面幾何問(wèn)題的“三步曲”?(1) 建立平面幾何與向量的聯(lián)系,(2) 通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,(3) 把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.作業(yè)見(jiàn)同步練習(xí)拓展提升一、 選擇題1.給出下面四個(gè)結(jié)論: 若線段AC=AB+BC,則向量; 若向量,則線段AC=AB+BC; 若向量與共線,則線段AC=AB+BC; 若向量與反向共線,則.其中正確的結(jié)論有 ( )A. 0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)2.河水的流速為2,一艘小船想以垂直于河岸方向10的速度駛向?qū)Π?,則小船的靜止速度大小為 ( )A.10 B. C. D.123.在中,若=0,則為 ( )A.正三角形 B.直角三角形 C.等腰三角形 D.無(wú)法確定二、填空題4.已知兩邊的向量,則BC邊上的中線向量用、表示為 .參考答案1.B 2.B 3.C 4.

注意事項(xiàng)

本文(2019-2020年高中數(shù)學(xué) 2.5《平面向量應(yīng)用舉例》教學(xué)設(shè)計(jì) 新人教A版必修4.doc)為本站會(huì)員(tian****1990)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!