2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1.doc
2019-2020年高中數(shù)學(xué) 3.4.3直線與圓錐曲線交點(diǎn)課時(shí)訓(xùn)練 北師大選修2-1一、選擇題1.斜率為1的直線l與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為( )A.2B. C.D. 2.拋物線y=ax2與直線y=kx+b(k0)交于A、B兩點(diǎn),且此兩點(diǎn)的橫坐標(biāo)分別為x1,x2,直線與x軸交點(diǎn)的橫坐標(biāo)是x3,則恒有 ( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=03. 過拋物線的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線 ( )A有且僅有一條 B有且僅有兩條 C有無窮多條 D不存在4. 設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點(diǎn)P,若F1PF2為等腰直角三角形,則橢圓的離心率是 ( )(A) (B) (C) (D)二、填空題5.已知兩點(diǎn)M(1,)、N(4,),給出下列曲線方程:4x+2y1=0,x2+y2=3,+y2=1,y2=1,在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是_.6.在拋物線y2=16x內(nèi),通過點(diǎn)(2,1)且在此點(diǎn)被平分的弦所在直線的方程是_.三、解答題7. 已知雙曲線C:2x2y2=2與點(diǎn)P(1,2)(1)求過P(1,2)點(diǎn)的直線l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在.8.如圖,已知某橢圓的焦點(diǎn)是F1(4,0)、F2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.(1)求該弦橢圓的方程;(2)求弦AC中點(diǎn)的橫坐標(biāo);(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.一、選擇題1. C 2. B 3.B 4.D 二、填空題5.解析:點(diǎn)P在線段MN的垂直平分線上,判斷MN的垂直平分線于所給曲線是否存在交點(diǎn).答案:6.解析:設(shè)所求直線與y2=16x相交于點(diǎn)A、B,且A(x1,y1),B(x2,y2),代入拋物線方程得y12=16x1,y22=16x2,兩式相減得,(y1+y2)(y1y2)=16(x1x2).即kAB=8.故所求直線方程為y=8x15.答案:8xy15=0三、解答題7.解:(1)當(dāng)直線l的斜率不存在時(shí),l的方程為x=1,與曲線C有一個(gè)交點(diǎn).當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()當(dāng)2k2=0,即k=時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn)()當(dāng)2k20,即k時(shí)=2(k22k)24(2k2)(k2+4k6)=16(32k)當(dāng)=0,即32k=0,k=時(shí),方程(*)有一個(gè)實(shí)根,l與C有一個(gè)交點(diǎn).當(dāng)0,即k,又k,故當(dāng)k或k或k時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn).當(dāng)0,即k時(shí),方程(*)無解,l與C無交點(diǎn).綜上知:當(dāng)k=,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn);當(dāng)k,或k,或k時(shí),l與C有兩個(gè)交點(diǎn);當(dāng)k時(shí),l與C沒有交點(diǎn).(2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12y12=2,2x22y22=2兩式相減得:2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=22(x1x2)=y1y1即kAB=2但漸近線斜率為,結(jié)合圖形知直線AB與C無交點(diǎn),所以假設(shè)不正確,即以Q為中點(diǎn)的弦不存在.8.解:(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b=3.故橢圓方程為=1.(2)由點(diǎn)B(4,yB)在橢圓上,得|F2B|=|yB|=.因?yàn)闄E圓右準(zhǔn)線方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(x1),|F2C|=(x2),由|F2A|、|F2B|、|F2C|成等差數(shù)列,得(x1)+(x2)=2,由此得出:x1+x2=8.設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0=4.(3)解法一:由A(x1,y1),C(x2,y2)在橢圓上.得得9(x12x22)+25(y12y22)=0,即9=0(x1x2)將 (k0)代入上式,得94+25y0()=0(k0)即k=y0(當(dāng)k=0時(shí)也成立).由點(diǎn)P(4,y0)在弦AC的垂直平分線上,得y0=4k+m,所以m=y04k=y0y0=y0.由點(diǎn)P(4,y0)在線段BB(B與B關(guān)于x軸對(duì)稱)的內(nèi)部,得y0,所以m.解法二:因?yàn)橄褹C的中點(diǎn)為P(4,y0),所以直線AC的方程為yy0=(x4)(k0)將代入橢圓方程=1,得(9k2+25)x250(ky0+4)x+25(ky0+4)2259k2=0所以x1+x2=8,解得k=y0.(當(dāng)k=0時(shí)也成立)(以下同解法一).