《高三數(shù)學(xué) 經(jīng)典例題精解分析 2-4-1 拋物線及其標(biāo)準(zhǔn)方程》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué) 經(jīng)典例題精解分析 2-4-1 拋物線及其標(biāo)準(zhǔn)方程(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2.4 拋物線2.4.1 拋物線及其標(biāo)準(zhǔn)方程
雙基達(dá)標(biāo) (限時(shí)20分鐘)
1.拋物線y2=-8x的焦點(diǎn)坐標(biāo)是 ( ).
A.(2,0) B.(-2,0) C.(4,0) D.(-4,0)
解析 依題意,拋物線開(kāi)口向左,焦點(diǎn)在x軸的負(fù)半軸上,由2p=8得=2,故焦點(diǎn)坐
標(biāo)為(-2,0),故選B.
答案 B
2.若拋物線y2=8x上一點(diǎn)P到其焦點(diǎn)的距離為10,則點(diǎn)P的坐標(biāo)為 ( ).
A.(8,8)
2、 B.(8,-8)
C.(8,±8) D.(-8,±8)
解析 設(shè)P(xP,yP),∵點(diǎn)P到焦點(diǎn)的距離等于它到準(zhǔn)線x=-2的距離,∴xP=8,yP=±8,
故選C.
答案 C
3.以雙曲線-=1的右頂點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為 ( ).
A.y2=16x B.y2=-16x
C.y2=8x D.y2=-8x
3、
解析 由雙曲線方程-=1,可知其焦點(diǎn)在x軸上,由a2=16,得a=4,∴該雙曲
線右頂點(diǎn)的坐標(biāo)是(4,0),∴拋物線的焦點(diǎn)為F(4,0).設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=
2px(p>0),則由=4,得p=8,故所求拋物線的標(biāo)準(zhǔn)方程為y2=16x.
答案 A
4.設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是________.
解析 由拋物線的方程得==2,再根據(jù)拋物線的定義,可知所求距離為4+2=6.
答案 6
5.若直線ax-y+1=0經(jīng)過(guò)拋物線y2=4x的焦點(diǎn),則實(shí)數(shù)a=________.
解析 拋物線y2=4x的焦點(diǎn)為(1,0),代入ax-y+1=
4、0,解得a=-1.
答案?。?
6.根據(jù)下列條件寫(xiě)出拋物線的標(biāo)準(zhǔn)方程:
(1)準(zhǔn)線方程是y=3;
(2)過(guò)點(diǎn)P(-2,4);
(3)焦點(diǎn)到準(zhǔn)線的距離為.
解 (1)由準(zhǔn)線方程為y=3知拋物線的焦點(diǎn)在y軸負(fù)半軸上,且=3,則p=6,故所求拋物線的標(biāo)準(zhǔn)方程為x2=-12y.
(2)∵點(diǎn)P(-2,4)在第二象限,∴設(shè)所求拋物線的標(biāo)準(zhǔn)方程為y2=-2px(p>0)或x2=2py(p>0),將點(diǎn)P(-2,4)代入y2=-2px,得p=2;代入x2=2py,得p=1.
∴所求拋物線的標(biāo)準(zhǔn)方程為y2=-4x或x2=2y.
(3)由焦點(diǎn)到準(zhǔn)線的距離為,得p=,故所求拋物線的標(biāo)準(zhǔn)方程為y2=2
5、x,y2=
-2x,x2=2y或x2=-2y.
綜合提高(限時(shí)25分鐘)
7.動(dòng)點(diǎn)到點(diǎn)(3,0)的距離比它到直線x=-2的距離大1,則動(dòng)點(diǎn)的軌跡是 ( ).
A.橢圓 B.雙曲線
C.雙曲線的一支 D.拋物線
解析 已知條件可等價(jià)于“動(dòng)點(diǎn)到點(diǎn)(3,0)的距離等于它到直線x=-3的距離”,由拋
物線的定義可判斷,動(dòng)點(diǎn)的軌跡為拋物線,故選D.
答案 D
8.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之
6、和的最小值是 ( ).
A.2 B.3 C. D.
解析 直線l2:x=-1為拋物線y2=4x的準(zhǔn)線,由拋物線的定義
知,P到l2的距離等于P到拋物線的焦點(diǎn)F(1,0)的距離,故本題
化為在拋物線y2=4x上找一個(gè)點(diǎn)P使得P到點(diǎn)F(1,0)和直線l1
的距離之和最小,最小值為F(1,0)到直線l1:4x-3y+6=0的距
離,即dmin==2,故選擇A.
答案 A
9.已知拋物線y2=2px(p>0)的準(zhǔn)線與
7、圓(x-3)2+y2=16相切,則p的值為_(kāi)_______.
解析 由拋物線方程y2=2px(p>0),得其準(zhǔn)線方程為x=-,又圓的方程為(x-3)2+y2
=16,∴圓心為(3,0),半徑為4.依題意,得3-(-)=4,解得p=2.
答案 2
10.拋物線y=-x2上的動(dòng)點(diǎn)M到兩定點(diǎn)F(0,-1),E(1,-3)的距離之和的最小值為_(kāi)_______.
解析 將拋物線方程化成標(biāo)準(zhǔn)方程為x2=-4y,可知焦點(diǎn)坐
標(biāo)為(0,-1),-3<-,所以點(diǎn)E(1,-3)在拋物線的內(nèi)部,
如圖所示,設(shè)拋物線的準(zhǔn)線為l,過(guò)M點(diǎn)作MP⊥l于點(diǎn)P,
過(guò)點(diǎn)E作EQ⊥l于點(diǎn)Q,由拋物線的定義可知,|M
8、F|+|ME|
=|MP|+|ME|≥|EQ|,當(dāng)且僅當(dāng)點(diǎn)M在EQ上時(shí)取等號(hào),又
|EQ|=1-(-3)=4,故距離之和的最小值為4.
答案 4
11.已知?jiǎng)訄AM經(jīng)過(guò)點(diǎn)A(3,0),且與直線l:x=-3相切,求動(dòng)圓圓心M的軌跡方程.
解 法一 設(shè)動(dòng)點(diǎn)M(x,y),設(shè)⊙M與直線l:x=-3的切點(diǎn)為N,則|MA|=|MN|,即動(dòng)點(diǎn)M到定點(diǎn)A和定直線l:x=-3的距離相等,所以點(diǎn)M的軌跡是拋物線,且以A(3,0)為焦點(diǎn),以直線l:x=-3為準(zhǔn)線,
∴=3,∴p=6.
∴圓心M的軌跡方程是y2=12x.
法二 設(shè)動(dòng)點(diǎn)M(x,y),則點(diǎn)M的軌跡是集合P={M||MA|=|MN|},
即
9、=|x+3|,化簡(jiǎn),得y2=12x.
∴圓心M的軌跡方程為y2=12x.
12.(創(chuàng)新拓展)設(shè)F(1,0),點(diǎn)M在x軸上,點(diǎn)P在y軸上,且
(1)當(dāng)點(diǎn)P在y軸上運(yùn)動(dòng)時(shí),求點(diǎn)N的軌跡C的方程;
(2)設(shè)A(x1,y1),B(x2,y2),D(x3,y3)是曲線C上除去原點(diǎn)外的不同三點(diǎn),且成等差數(shù)列,當(dāng)線段AD的垂直平分線與x軸交于點(diǎn)E(3,0)時(shí),求點(diǎn)B的坐標(biāo).
解 (1)設(shè)N(x,y),由得點(diǎn)P為線段MN的中點(diǎn),∴P(0,),
M(-x,0),
∴=(-x,-),=(1,-).
由=-x+=0,得y2=4x.
即點(diǎn)N的軌跡方程為y2=4x.
(2)由拋物線的定義,知|AF|=x1+1,|BF|=x2+1,|DF|=x3+1,
∵成等差數(shù)列,
∴2x2+2=x1+1+x3+1,即x2=.
∵線段AD的中點(diǎn)為(,),且線段AD的垂直平分線與x軸交于點(diǎn)E(3,0),
∴線段AD的垂直平分線的斜率為k=.
又kAD=,∴·=-1,
即=-1.
∵x1≠x3,∴x1+x3=2,又x2=,∴x2=1.
∵點(diǎn)B在拋物線上,∴B(1,2)或(1,-2).