高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點11 空間中的平行與垂直關(guān)系教師用書 理-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:238064540 上傳時間:2023-12-26 格式:DOC 頁數(shù):21 大小:694KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點11 空間中的平行與垂直關(guān)系教師用書 理-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共21頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點11 空間中的平行與垂直關(guān)系教師用書 理-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共21頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點11 空間中的平行與垂直關(guān)系教師用書 理-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共21頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

20 積分

下載資源

資源描述:

《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點11 空間中的平行與垂直關(guān)系教師用書 理-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題4 立體幾何 突破點11 空間中的平行與垂直關(guān)系教師用書 理-人教版高三數(shù)學(xué)試題(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、突破點11 空間中的平行與垂直關(guān)系 (對應(yīng)學(xué)生用書第167頁) 提煉1 異面直線的性質(zhì) (1)異面直線不具有傳遞性.注意不能把異面直線誤解為分別在兩個不同平面內(nèi)的兩條直線或平面內(nèi)的一條直線與平面外的一條直線. (2)異面直線所成角的范圍是,所以空間中兩條直線垂直可能為異面垂直或相交垂直. (3)求異面直線所成角的一般步驟為:①找出(或作出)適合題設(shè)的角——用平移法;②求——轉(zhuǎn)化為在三角形中求解;③結(jié)論——由②所求得的角或其補角即為所求. 提煉2 平面與平面平行的常用性質(zhì) (1)夾在兩個平行平面之間的平行線段長度相等. (2)經(jīng)過平面外一點有且只有一個平面與已知平面平

2、行. (3)如果兩個平面分別平行于第三個平面,那么這兩個平面互相平行. (4)兩個平面平行,則其中一個平面內(nèi)的任意一條直線平行于另一個平面. 提煉3 證明線面位置關(guān)系的方法 (1)證明線線平行的方法:①三角形的中位線等平面幾何中的性質(zhì);②線面平行的性質(zhì)定理;③面面平行的性質(zhì)定理;④線面垂直的性質(zhì)定理. (2)證明線面平行的方法:①尋找線線平行,利用線面平行的判定定理;②尋找面面平行,利用面面平行的性質(zhì). (3)證明線面垂直的方法:①線面垂直的定義,需要說明直線與平面內(nèi)的所有直線都垂直;②線面垂直的判定定理;③面面垂直的性質(zhì)定理. (4)證明面面垂直的方法:①定義法,即證明兩個平

3、面所成的二面角為直二面角;②面面垂直的判定定理,即證明一個平面經(jīng)過另一個平面的一條垂線. 回訪1 異面直線的性質(zhì) 1.(2016·全國乙卷)平面α過正方體ABCD-A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為(  ) A.   B. C. D. A [設(shè)平面CB1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1,

4、且平面CB1D1∩平面DCC1D1=CD1, 同理可證CD1∥n. 因此直線m與n所成的角即直線B1D1與CD1所成的角. 在正方體ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直線B1D1與CD1所成角為60°,其正弦值為.] 2.(2015·廣東高考)若直線l1和l2是異面直線,l1在平面α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是(  ) A.l與l1,l2都不相交 B.l與l1,l2都相交 C.l至多與l1,l2中的一條相交 D.l至少與l1,l2中的一條相交 D [由直線l1和l2是異面直線可知l1與l2不平行,故l1,l2中至少

5、有一條與l相交.] 回訪2 面面平行的性質(zhì)與線面位置關(guān)系的判斷 3.(2013·全國卷Ⅱ)已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,l?α,l?β,則(  ) A.α∥β且l∥α B.α⊥β且l⊥β C.α與β相交,且交線垂直于l D.α與β相交,且交線平行于l D [根據(jù)所給的已知條件作圖,如圖所示. 由圖可知α與β相交,且交線平行于l,故選D.] 4.(2016·全國甲卷)α,β是兩個平面,m,n是兩條直線,有下列四個命題: ①如果m⊥n,m⊥α,n∥β,那么α⊥β. ②如果m⊥α,n∥α,那么m⊥n. ③如果α∥β,m?α,那么m

6、∥β. ④如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等. 其中正確的命題有________.(填寫所有正確命題的編號) ②③④ [對于①,α,β可以平行,也可以相交但不垂直,故錯誤. 對于②,由線面平行的性質(zhì)定理知存在直線l?α,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正確. 對于③,因為α∥β,所以α,β沒有公共點.又m?α,所以m,β沒有公共點,由線面平行的定義可知m∥β,故正確. 對于④,因為m∥n,所以m與α所成的角和n與α所成的角相等.因為α∥β,所以n與α所成的角和n與β所成的角相等,所以m與α所成的角和n與β所成的角相等,故正確.] (對應(yīng)學(xué)生

7、用書第167頁) 熱點題型1 空間位置關(guān)系的判斷與證明 題型分析:空間中平行與垂直關(guān)系的判斷與證明是高考常規(guī)的命題形式,此類題目綜合體現(xiàn)了相關(guān)判定定理和性質(zhì)定理的考查,同時也考查了學(xué)生的空間想象能力及轉(zhuǎn)化與化歸的思想.  (1)(2016·蘭州三模)α,β是兩平面,AB,CD是兩條線段,已知α∩β=EF,AB⊥α于點B,CD⊥α于點D,若增加一個條件,就能得出BD⊥EF.現(xiàn)有下列條件: ①AC⊥β;②AC與α,β所成的角相等;③AC與CD在β內(nèi)的射影在同一條直線上;④AC∥EF. 其中能成為增加條件的序號是________. 【導(dǎo)學(xué)號:67722040】 ①③ [若AC⊥β,且

8、EF?β,則AC⊥EF,又AB⊥α,且EF?α,則AB⊥EF,AB和AC是平面ACDB上的兩條相交直線,則EF⊥平面ACDB,則EF⊥BD,①可以成為增加的條件;AC與α,β所成的角相等,AC和EF不一定垂直,可以相交、平行,所以EF與平面ACDB不一定垂直,所以推不出EF與BD垂直,②不能成為增加的條件;由CD⊥α,EF?α,得EF⊥CD,所以EF與CD在β內(nèi)的射影垂直,又AC與CD在β內(nèi)的射影在同一直線上,所以EF⊥AC,CD和AC是平面ACDB上的兩條相交直線,則EF⊥平面ACDB,則EF⊥BD,③可以成為增加的條件;若AC∥EF,則AC∥α,則BD∥AC,所以BD∥EF,④不能成為增加

9、的條件,故能成為增加條件的序號是①③.] (2)(2016·山東高考)在如圖11-1所示的幾何體中,D是AC的中點,EF∥DB. ①已知AB=BC,AE=EC,求證:AC⊥FB; ②已知G,H分別是EC和FB的中點,求證:GH∥平面ABC. 圖11-1 [解題指導(dǎo)] ①→→→→→ ②→→→→ [證明]?、僖驗镋F∥DB, 所以EF與DB確定平面BDEF. 如圖①,連接DE.1分 因為AE=EC,D為AC的中點, 所以DE⊥AC.同理可得BD⊥AC.3分 又BD∩DE=D,所以AC⊥平面BDEF.5分 因為FB?平面BDEF,所以AC⊥FB.6分 ① ②如圖

10、②,設(shè)FC的中點為I,連接GI,HI. 在△CEF中,因為G是CE的中點, 所以GI∥EF.7分 又EF∥DB,所以GI∥DB.8分 在△CFB中,因為H是FB的中點, 所以HI∥BC.又HI∩GI=I,9分 所以平面GHI∥平面ABC.11分 因為GH?平面GHI,所以GH∥平面ABC.12分 ② 在解答空間中線線、線面和面面的位置關(guān)系問題時,我們可以從線、面的概念、定理出發(fā),學(xué)會找特例、反例和構(gòu)建幾何模型.判斷兩直線是異面直線是難點,我們可以依據(jù)定義來判定,也可以依據(jù)定理(過平面外一點與平面內(nèi)一點的直線,和平面內(nèi)不經(jīng)過該點的直線是異面直線)判定.而反證法是證明兩直

11、線異面的有效方法. 提醒:判斷直線和平面的位置關(guān)系中往往易忽視直線在平面內(nèi),而面面位置關(guān)系中易忽視兩個平面平行.此類問題可以結(jié)合長方體中的線面關(guān)系找出假命題中的反例. [變式訓(xùn)練1] (1)(2016·石家莊二模)設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題: ①若m?α,n∥α,則m∥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;③若α∩β=n,m∥n,則m∥α,m∥β;④若α⊥γ,β⊥γ,則α∥β. 其中真命題的個數(shù)為(  ) A.0    B.1    C.2    D.3 B [若m?α,n∥α,則m,n可能平行或異面,①錯誤;若α∥β,β∥γ,則α

12、∥γ,又m⊥α,則m⊥γ,②正確;若α∩β=n,m∥n,則m∥α或m∥β或m?α或m?β,③錯誤;若α⊥γ,β⊥γ,則α,β可能平行或相交,④錯誤,則真命題個數(shù)為1,故選B.] (2)(2016·威海二模)已知直四棱柱ABCD-A1B1C1D1,AD=DD1=2,BC=DC=1,DC⊥BC,AD∥BC,E,F(xiàn)分別為CC1,DD1的中點. 圖11-2 ①求證:BF⊥A1B1; ②求證:平面BEF∥平面AD1C1. [證明]?、俜ㄒ唬哼B接AF,則在Rt△ADF中,AF===. 連接BD,則在Rt△BDF中,BF===.4分 取AD中點G連接BG,則在Rt△ABG中AB=. ∴在

13、△ABF中,AB2+BF2=2+3=5=AF2, ∴AB⊥BF,又∵AB∥A1B1,∴A1B1⊥BF.6分 法二:說明A1B1⊥BB1,證明A1B1⊥B1D1,得到A1B1⊥平面B1BDD1,由BF?平面B1BDD1,證得A1B1⊥BF. ②∵E,F(xiàn)分別為CC1,DD1的中點,∴EF∥C1D1,連接FG, 由BC綊GD,得BG綊DC,∴BG綊EF,∴BGEF為平行四邊形, ∴GF∥BE.10分 ∵G,F(xiàn)分別為AD,DD1的中點,∴GF∥AD1, ∴BE∥AD1, ∵BE∩EF=E,AD1∩D1C1=D1, ∴平面BEF∥平面AD1C1.12分 熱點題型2 平面圖形的翻折

14、問題 題型分析:(1)解決翻折問題的關(guān)鍵是搞清翻折前后圖形中線面位置關(guān)系和度量關(guān)系的變化情況.,(2)找出其中變化的量和沒有變化的量,一般地翻折后還在同一個平面上的性質(zhì)不發(fā)生變化,不在同一個平面上的性質(zhì)發(fā)生變化.  (2016·全國甲卷)如圖11-3,菱形ABCD的對角線AC與BD交于點O,點E,F(xiàn)分別在AD,CD上,AE=CF,EF交BD于點H.將△DEF沿EF折到△D′EF的位置. (1)證明:AC⊥HD′; (2)若AB=5,AC=6,AE=,OD′=2,求五棱錐D′-ABCFE的體積. 圖11-3 [解] (1)證明:由已知得AC⊥BD,AD=CD.1分 又由AE=C

15、F得=,故AC∥EF.2分 由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.3分 (2)由EF∥AC得==.4分 由AB=5,AC=6得DO=BO==4. 所以O(shè)H=1,D′H=DH=3.5分 于是OD′2+OH2=(2)2+12=9=D′H2, 故OD′⊥OH.6分 由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H, 所以AC⊥平面BHD′,于是AC⊥OD′.8分 又由OD′⊥OH,AC∩OH=O,所以O(shè)D′⊥平面ABC. 又由=得EF=.10分 五邊形ABCFE的面積S=×6×8-××3=.11分 所以五棱錐D′-ABCFE的體積V=××2=.12分

16、 翻折問題的注意事項 1.畫好兩圖:翻折之前的平面圖形與翻折之后形成的幾何體的直觀圖. 2.把握關(guān)系:即比較翻折前后的圖形,準(zhǔn)確把握平面圖形翻折前后的線線關(guān)系,哪些平行與垂直的關(guān)系不變,哪些平行與垂直的關(guān)系發(fā)生變化,這是準(zhǔn)確把握幾何體結(jié)構(gòu)特征,進行空間線面關(guān)系邏輯推理的基礎(chǔ). 3.準(zhǔn)確定量:即根據(jù)平面圖形翻折的要求,把平面圖形中的相關(guān)數(shù)量轉(zhuǎn)化為空間幾何體的數(shù)字特征,這是準(zhǔn)確進行計算的基礎(chǔ). [變式訓(xùn)練2] (2016·海淀二模)已知長方形ABCD中,AD=,AB=2,E為AB的中點.將△ADE沿DE折起到△PDE,得到四棱錐P-BCDE,如圖11-4所示. 圖11-4 (1)若

17、點M為PC的中點,求證:BM∥平面PDE; (2)當(dāng)平面PDE⊥平面BCDE時,求四棱錐P-BCDE的體積; (3)求證:DE⊥PC. [解] (1)證明:取DP中點F,連接EF,F(xiàn)M. 因為在△PDC中,點F,M分別是所在邊的中點, 所以FM綊DC.1分 又EB綊DC,所以FM綊EB,2分 所以四邊形FEBM是平行四邊形,所以BM∥EF.3分 又EF?平面PDE,BM?平面PDE. 所以BM∥平面PDE.4分 (2)因為平面PDE⊥平面BCDE, 在△PDE中,作PO⊥DE于點O, 因為平面PDE∩平面BCDE=DE,所以PO⊥平面BCDE.6分 在△PDE中,

18、計算可得PO=,7分 所以V四棱錐P-BCDE=Sh=×(1+2)××=.8分 (3)證明:在矩形ABCD中,連接AC交DE于點I, 因為tan∠DEA=,tan∠CAB=, 所以∠DEA+∠CAB=,所以DE⊥AC,9分 所以在四棱錐P-BCDE中,PI⊥DE,CI⊥DE,10分 又PI∩CI=I,所以DE⊥平面PIC.11分 因為PC?平面PIC,所以DE⊥PC.12分 專題限時集訓(xùn)(十一) 空間中的平行與垂直關(guān)系 [建議A、B組各用時:45分鐘] [A組 高考達(dá)標(biāo)] 一、選擇題 1.(2016·南昌一模)設(shè)α為平面,a,b為兩條不同的直線,則下列敘述正確的是

19、(  ) A.若a∥α,b∥α,則a∥b B.若a⊥α,a∥b,則b⊥α C.若a⊥α,a⊥b,則b∥α D.若a∥α,a⊥b,則b⊥α B [A中,兩直線可能平行、相交或異面,故A錯;B中,由直線與平面垂直的判定定理可知B正確;C中,b可能平行α,也可能在α內(nèi),故C錯;D中,b可能平行α,也可能在α內(nèi),還可能與α相交,故D錯.綜上所述,故選B.] 2.(2016·濟南一模)設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,給出下列四個命題: ①若m∥n,m⊥β,則n⊥β; ②若m∥α,m∥β,則α∥β; ③若m∥n,m∥β,則n∥β; ④若m⊥α,m⊥β,則α⊥β. 其

20、中真命題的個數(shù)為(  ) A.1    B.2    C.3    D.4 A [對于①,由直線與平面垂直的判定定理易知其正確;對于②,平面α與β可能平行或相交,故②錯誤;對于③,直線n可能平行于平面β,也可能在平面β內(nèi),故③錯誤;對于④,由兩平面平行的判定定理易得平面α與β平行,故④錯誤.綜上所述,正確命題的個數(shù)為1,故選A.] 3.如圖11-5所示,直線PA垂直于⊙O所在的平面,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,點M為線段PB的中點.現(xiàn)有結(jié)論:①BC⊥PC;②OM∥平面APC;③點B到平面PAC的距離等于線段BC的長.其中正確的是(  ) 圖11-5 A.①② B.①

21、②③ C.① D.②③ B [對于①,∵PA⊥平面ABC,∴PA⊥BC. ∵AB為⊙O的直徑,∴BC⊥AC.又∵PA∩AC=A,∴BC⊥平面PAC, 又PC?平面PAC,∴BC⊥PC. 對于②,∵點M為線段PB的中點, ∴OM∥PA.∵PA?平面PAC,OM?平面PAC, ∴OM∥平面PAC. 對于③,由①知BC⊥平面PAC, ∴線段BC的長即是點B到平面PAC的距離,故①②③都正確.] 4.已知α,β是兩個不同的平面,有下列三個條件: ①存在一個平面γ,γ⊥α,γ∥β; ②存在一條直線a,a?α,a⊥β; ③存在兩條垂直的直線a,b,a⊥β,b⊥α. 其中,所有能

22、成為“α⊥β”的充要條件的序號是(  ) A.①    B.②    C.③    D.①③ D [對于①,存在一個平面γ,γ⊥α,γ∥β,則α⊥β,反之也成立,即“存在一個平面γ,γ⊥α,γ∥β”是“α⊥β”的充要條件,所以①對,可排除B,C. 對于③,存在兩條垂直的直線a,b,則直線a,b所成的角為90°, 因為a⊥β,b⊥α,所以α,β所成的角為90°, 即α⊥β,反之也成立,即“存在兩條垂直的直線a,b,a⊥β,b⊥α”是“α⊥β”的充要條件,所以③對,可排除A,選D.] 5.(2016·成都二模)在三棱錐P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F(xiàn)分別是線段PB

23、,PC上的動點,則下列說法錯誤的是(  ) 圖11-6 A.當(dāng)AE⊥PB時,△AEF一定為直角三角形 B.當(dāng)AF⊥PC時,△AEF一定為直角三角形 C.當(dāng)EF∥平面ABC時,△AEF一定為直角三角形 D.當(dāng)PC⊥平面AEF時,△AEF一定為直角三角形 B [因為AP⊥平面ABC,所以AP⊥BC,又AB⊥BC,且PA和AB是平面PAB上兩條相交直線,則BC⊥平面PAB,BC⊥AE.當(dāng)AE⊥PB時,AE⊥平面PBC,則AE⊥EF,△AEF一定是直角三角形,A正確;當(dāng)EF∥平面ABC時,EF在平面PBC上,平面PBC與平面ABC相交于BC,則EF∥BC,則EF⊥AE,△AEF一定是直

24、角三角形,C正確;當(dāng)PC⊥平面AEF時,AE⊥PC,又AE⊥BC,則AE⊥平面PBC,AE⊥EF,△AEF一定是直角三角形,D正確;B中結(jié)論無法證明,故選B.] 二、填空題 6.已知P為△ABC所在平面外一點,且PA,PB,PC兩兩垂直,則下列命題: ①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC. 其中正確命題的個數(shù)是________. 【導(dǎo)學(xué)號:67722041】 3 [如圖所示,∵PA⊥PC,PA⊥PB,PC∩PB=P, ∴PA⊥平面PBC. 又∵BC?平面PBC, ∴PA⊥BC. 同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.] 7.在三棱錐C-ABD

25、中(如圖11-7),△ABD與△CBD是全等的等腰直角三角形,O是斜邊BD的中點,AB=4,二面角A-BD-C的大小為60°,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos ∠ADC=;⑤四面體ABCD的外接球表面積為32π.其中真命題是________(填序號). 圖11-7 ①③⑤ [由題意知BD⊥CO,BD⊥AO,則BD⊥平面AOC,從而BD⊥AC,故①正確;根據(jù)二面角A-BD-C的大小為60°,可得∠AOC=60°,又直線AD在平面AOC的射影為AO,從而AD與CO不垂直,故②錯誤;根據(jù)∠AOC=60°,AO=CO可得△AOC為正三角形,故③正確;在

26、△ADC中 ,AD=CD=4,AC=CO=2,由余弦定理得cos ∠ADC==,故④錯誤;由題意知,四面體ABCD的外接球的球心為O,半徑為2,則外接球的表面積為S=4π×(2)2=32π,故⑤正確.] 8.正方體ABCD-A1B1C1D1中,E為線段B1D1上的一個動點,則下列結(jié)論中正確的是________.(填序號) ①AC⊥BE; ②B1E∥平面ABCD; ③三棱錐E-ABC的體積為定值; ④直線B1E⊥直線BC1. ①②③ [因為AC⊥平面BDD1B1,故①,②正確;記正方體的體積為V,則VE-ABC=V為定值,故③正確;B1E與BC1不垂直,故④錯誤.] 三、解答題

27、9.(2016·北京高考)如圖11-8,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC. 圖11-8 (1)求證:DC⊥平面PAC. (2)求證:平面PAB⊥平面PAC. (3)設(shè)點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由. [解] (1)證明:因為PC⊥平面ABCD, 所以PC⊥DC.2分 又因為DC⊥AC,且PC∩AC=C, 所以DC⊥平面PAC.4分 (2)證明:因為AB∥DC,DC⊥AC, 所以AB⊥AC. 因為PC⊥平面ABCD,所以PC⊥AB. 又因為PC∩AC=C,所以AB⊥平面PAC.8分 又AB?

28、平面PAB,所以平面PAB⊥平面PAC.9分 (3)棱PB上存在點F,使得PA∥平面CEF.10分 理由如下:取PB的中點F,連接EF,CE,CF. 又因為E為AB的中點,所以EF∥PA. 又因為PA?平面CEF,且EF?平面CEF, 所以PA∥平面CEF.14分 10.(2016·青島模擬)如圖11-9,四棱錐P-ABCD,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點. 圖11-9 (1)求證:PC⊥AD; (2)求點D到平面PAM的距離. [解] (1)證明:法一:取AD中點O,連接OP,OC,AC,依題意可知△

29、PAD,△ACD均為正三角形,所以O(shè)C⊥AD,OP⊥AD,又OC∩OP=O,OC?平面POC,OP?平面POC,所以AD⊥平面POC,又PC?平面POC,所以PC⊥AD. 5分 法二:連接AC,AM,DM,依題意可知△PAD,△ACD均為正三角形,又M為PC的中點,所以AM⊥PC,DM⊥PC, 又AM∩DM=M,AM?平面AMD,DM?平面AMD, 所以PC⊥平面AMD, 又AD?平面AMD,所以PC⊥AD.5分 (2)由題可知,點D到平面PAM的距離即點D到平面PAC的距離,由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD, PO?平面PAD,

30、所以PO⊥平面ABCD,即PO為三棱錐P-ADC的高. 在Rt△POC中,PO=OC=,PC=, 在△PAC中,PA=AC=2,PC=,邊PC上的高AM==, 所以S△PAC=PC·AM=××=.8分 設(shè)點D到平面PAC的距離為h,由VD-PAC=VP-ACD得S△PAC·h=S△ACD·PO,又S△ACD=×22=, 所以×·h=××,解得h=,所以點D到平面PAM的距離為.12分 [B組 名校沖刺] 一、選擇題 1.(2016·烏魯木齊三模)如圖11-10,在多面體ABC-DEFG中,平面ABC∥平面DEFG,AC∥GF,且△ABC是邊長為2的正三角形,四邊形DEFG是邊長

31、為4的正方形,M,N分別為AD,BE的中點,則MN=(  ) 圖11-10 A.    B.4 C. D.5 A [如圖,取BD的中點P,連接MP,NP,則MP∥AB,NP∥DE,MP=AB=1,NP=DE=2.又∵AC∥GF,∴AC∥NP. ∵∠CAB=60°,∴∠MPN=120°,∴MN===,故選A.] 2.如圖11-11,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD.則在三棱錐A-BCD中,下列命題正確的是(  ) 圖11-11 A.平面ABD⊥平面ABC

32、 B.平面ADC⊥平面BDC C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC D [∵在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,∴CD⊥平面ABD,則CD⊥AB.又AD⊥AB,AD∩CD=D,∴AB⊥平面ADC,又AB?平面ABC,∴平面ABC⊥平面ADC,故選D.] 3.(2016·貴陽二模)如圖11-12,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點,沿AE,AF,EF把正方形折成一個四面體,使B,C,D三點重合,重合后的點記為P,P點在△AEF內(nèi)的射影為O,則

33、下列說法正確的是(  ) 圖11-12 A.O是△AEF的垂心 B.O是△AEF的內(nèi)心 C.O是△AEF的外心 D.O是△AEF的重心 A [由題意可知PA,PE,PF兩兩垂直,∴PA⊥平面PEF,從而PA⊥EF,而PO⊥平面AEF, 則PO⊥EF. ∵PO∩PA=P,∴EF⊥平面PAO,∴EF⊥AO,同理可知AE⊥FO,AF⊥EO,∴O為△AEF的垂心.故選A.] 4.(2016·長沙模擬)如圖11-13,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)是線段B1D1上的兩個動點,且EF=,則下列結(jié)論中錯誤的是(  ) 圖11-13 A.AC⊥BF B.三棱

34、錐A-BEF的體積為定值 C.EF∥平面ABCD D.異面直線AE,BF所成的角為定值 D [對于選項A,連接BD,易知AC⊥平面BDD1B1.∵BF?平面BDD1B1,∴AC⊥BF,故A正確;對于選項B,∵AC⊥平面BDD1B1,∴A到平面BEF的距離不變.∵EF=,B到EF的距離為1,∴△BEF的面積不變,∴三棱錐A-BEF的體積為定值,故B正確;對于選項C,∵EF∥BD,BD?平面ABCD,EF?平面ABCD,∴EF∥平面ABCD,故C正確;對于選項D,異面直線AE,BF所成的角不為定值,當(dāng)F與B1重合時,令上底面中心為O,則此時兩異面直線所成的角是∠A1AO,當(dāng)E與D1重合時,點

35、F與O重合,則兩異面直線所成的角是∠OBC1,這兩個角不相等,故異面直線AE,BF所成的角不為定值,故D錯誤.] 二、填空題 5.(2016·衡水二模)如圖11-14,正方形BCDE的邊長為a,已知AB=BC,將△ABE沿邊BE折起,折起后A點在平面BCDE上的射影為D點,關(guān)于翻折后的幾何體有如下描述: 圖11-14 ①AB與DE所成角的正切值是;②AB∥CE;③VB-ACE=a3;④平面ABC⊥平面ACD.其中正確的有________.(填序號) ①③④ [作出折疊后的幾何體直觀圖如圖所示: ∵AB=BC=a,BE=a,∴AE=a. ∴AD==a,∴AC==a.在△AB

36、C中,cos∠ABC===. ∴sin∠ABC==. ∴tan ∠ABC==. ∵BC∥DE,∴∠ABC是異面直線AB,DE所成的角,故①正確.連接BD,CE,則CE⊥BD,又AD⊥平面BCDE,CE?平面BCDE,∴CE⊥AD.又BD∩AD=D,BD?平面ABD,AD?平面ABD,∴CE⊥平面ABD.又AB?平面ABD,∴CE⊥AB,故②錯誤.VB-ACE=VA-BCE=S△BCE·AD=××a2×a=,故③正確.∵AD⊥平面BCDE,BC?平面BCDE,∴BC⊥AD.又BC⊥CD,CD∩AD=D,CD,AD?平面ACD,∴BC⊥平面ACD.∵BC?平面ABC,∴平面ABC⊥平面ACD

37、,故④正確.故答案為①③④.] 6.(2016·太原二模)已知在直角梯形ABCD中,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,將直角梯形ABCD沿AC折疊成三棱錐D-ABC,當(dāng)三棱錐D-ABC的體積取最大值時,其外接球的體積為________. 【導(dǎo)學(xué)號:67722042】 π [當(dāng)平面DAC⊥平面ABC時,三棱錐D-ABC的體積取最大值.此時易知BC⊥平面DAC,∴BC⊥AD.又AD⊥DC,∴AD⊥平面BCD,∴AD⊥BD,取AB的中點O,易得OA=OB=OC=OD=1,故O為所求外接球的球心,故半徑r=1,體積V=πr3=π.] 三、解答題 7.(2016·四川高考)如

38、圖11-15,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD. 圖11-15 (1)在平面PAD內(nèi)找一點M,使得直線CM∥平面PAB,并說明理由; (2)證明:平面PAB⊥平面PBD. [解] (1)取棱AD的中點M(M∈平面PAD),點M即為所求的一個點.2分 理由如下: 因為AD∥BC,BC=AD, 所以BC∥AM,且BC=AM. 所以四邊形AMCB是平行四邊形, 所以CM∥AB.4分 又AB?平面PAB,CM?平面PAB, 所以CM∥平面PAB.6分 (說明:取棱PD的中點N,則所找的點可以是直線MN上任意一點)

39、 (2)證明:由已知,PA⊥AB,PA⊥CD, 因為AD∥BC,BC=AD,所以直線AB與CD相交, 所以PA⊥平面ABCD,所以PA⊥BD.8分 因為AD∥BC,BC=AD,M為AD的中點,連接BM, 所以BC∥MD,且BC=MD, 所以四邊形BCDM是平行四邊形,10分 所以BM=CD=AD,所以BD⊥AB. 又AB∩AP=A,所以BD⊥平面PAB. 又BD?平面PBD,所以平面PAB⊥平面PBD.12分 8.(2016·長春二模)已知等腰梯形ABCD(如圖11-16(1)所示),其中AB∥CD,E,F(xiàn)分別為AB和CD的中點,且AB=EF=2,CD=6,M為BC中點.現(xiàn)將

40、梯形ABCD沿著EF所在直線折起,使平面EFCB⊥平面EFDA(如圖11-16(2)所示),N是線段CD上一動點,且CN=ND. (1)         (2) 圖11-16 (1)求證:MN∥平面EFDA; (2)求三棱錐A-MNF的體積. [解] (1)證明:過點M作MP⊥EF于點P,過點N作NQ⊥FD于點Q,連接PQ.由題知,平面EFCB⊥平面EFDA,又MP⊥EF,平面EFCB∩平面EFDA=EF,∴MP⊥平面EFDA. 又EF⊥CF,EF⊥DF,CF∩DF=F,∴EF⊥平面CFD. 又NQ?平面CFD,∴NQ⊥EF. 又NQ⊥FD,EF∩FD=F,∴NQ⊥平面EF

41、DA,∴MP∥NQ.2分 又CN=ND,∴NQ=CF=×3=2, 且MP=(BE+CF)=×(1+3)=2,∴MP綊NQ, ∴四邊形MNQP為平行四邊形.4分 ∴MN∥PQ. 又∵MN?平面EFDA,PQ?平面EFDA, ∴MN∥平面EFDA.6分 (2)法一:延長DA,CB相交于一點H,則H∈CB,H∈DA. 又∵CB?平面FEBC,DA?平面FEAD. ∴H∈平面FEBC,H∈平面FEAD, 即H∈平面FEBC∩平面FEAD=EF, ∴DA,F(xiàn)E,CB交于一點H,且HE=EF=1.8分 V三棱錐F-CDH=V三棱錐C-HFD=·S△HFD·CF=, 又由平面幾何知識得=,10分 則=, ∴V三棱錐A-MNF=V三棱錐F-AMN=·V三棱錐F-CDH=×=1.12分 法二:V三棱臺BEA-CDF=×EF×(S△BEA++S△CDF)=×2×=, V四棱錐A-BEFM=×AE×S四邊形BEFM=, V三棱錐N-ADF=×2×S△ADF=2, V三棱錐N-CFM=×1×S△CFM=,10分 V三棱錐A-MNF=V三棱臺BEA-CDF-V三棱錐N-CFM-V四棱錐A-BEFM-V三棱錐N-ADF =---2=1.12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!