斯太爾重型車雙級主減速器設計【含CAD高清圖紙和說明書】
斯太爾重型車雙級主減速器設計【含CAD高清圖紙和說明書】,含CAD高清圖紙和說明書,斯太爾,重型車,雙級主,減速器,設計,cad,高清,圖紙,以及,說明書,仿單
畢業(yè)設計(論文)開題報告
設計(論文)題目: 斯太爾重型車雙級主減速器
院 系 名 稱: 汽車工程學院
專 業(yè) 班 級: 車輛工程07-6
學 生 姓 名: 吳文強
導 師 姓 名: 趙國遷
開 題 時 間: 2011年2月28日
指導委員會審查意見:
簽字: 年 月 日
本科學生畢業(yè)設計
斯太爾重型車雙級主減速器設計
系部名稱: 汽車與交通工程學院
專業(yè)班級: 車輛工程 B07-6班
學生姓名: 吳文強
指導教師: 趙國遷
職 稱: 高級實驗師
黑 龍 江 工 程 學 院
二○一一年六月
The Graduation Design for Bachelor's Degree
The Two-stage Main Gear Box
of STYER
Candidate:Wu Wenqiang
Specialty:Vehicle Engineering
Class:B07-6
Supervisor:Senior Experimentator. Zhao Guoqian
Heilongjiang Institute of Technology
20011-06·Harbin
SY-025-BY-2
畢業(yè)設計(論文)任務書
學生姓名
吳文強
系部
汽車工程系
專業(yè)、班級
車輛07-6班
指導教師姓名
趙國遷
職稱
高級實驗師
從事
專業(yè)
汽車運用技術
是否外聘
□是■否
題目名稱
斯太爾重型車雙級主減速器設計
一、 設計(論文)目的、意義
載貨汽車的有關參數
名稱
代號 參數
驅動形式
4×2
裝載質量/t
8.510
總質量/t
16
發(fā)動機最大功率/kw及轉速/r/min
- 140-2500
發(fā)動機最大轉矩/N.m及轉速/r/min
- 700-1400
輪胎型號
11.00-20
變速器傳動比
5.2
0.72
最高車速/km/h
92
主減速器設計是汽車設計中重要的環(huán)節(jié)之一。主減速器的功用是將輸入的轉矩增大并相應降低轉速,以及當發(fā)動機縱置時還具有改變轉矩旋轉方向的作用。
通過本題目的設計,學生可綜合運用機械原理、機械設計、理論力學、材料力學、汽車構造、汽車理論、汽車設計等知識,達到綜合訓練的效果。
二、設計(論文)內容、技術要求(研究方法)
1 設計的主要內容
在本畢業(yè)設計中,針對載貨汽汽車的主減速器進行設計,使之具有足夠的強度和剛度以及較高的傳動效率,通過對主減速器主要結構尺寸的計算,分析雙級主減速器的結構形式、特點及工作原理,進行主減速器總成及零部件的結構及尺寸設計,完成齒輪及軸承等的強度校核。繪制總裝配圖和主要零件圖,編寫設計說明書。
2技術要求(研究方法)
要求將汽車構造、汽車設計、機械制圖、計算機軟件等相關知識有機結合、熟練運用;
要求熟練運用CAD軟件。
三、設計(論文)完成后應提交的成果
1、完成設計說明書一份(1.5萬字以上)。
2、繪制總裝配圖和主要零件圖,圖量折合A0圖紙3張以上。
3、設計資料的電子稿件一份。
四、設計(論文)進度安排
第一周~第二周 查閱資料,學習主減速器設計,開題報告。
第三周 撰寫文獻綜述。
第四周~第六周 主減速器傳動比計算及主、從動錐齒輪齒數分配;主、從動錐齒輪設計計算和校核;
第七周~第九周 二級主、從動圓柱齒輪齒數分配;主、從動圓柱齒輪設計計算和校核;
第十周 軸承的選擇及箱體設計
第十一周~第十二周 繪制主減速器設計裝配圖及零件圖。
第十三周~第十四周 修改圖紙、完成設計說明書。
第十五周~第十六周 對圖紙及設計說明書進一步修改,對設計圖紙及設計說明書內
容、格式、英文摘要等進行最終審查和修改。
第十七周 畢業(yè)答辯
五、主要參考資料
[1] 劉惟信主編. 汽車設計.北京:清華大學出版社
[2] 仙波正莊(日).行星齒輪傳動及應用[M].北京:機械工業(yè)出版社,1998
[3] 成大先.機械設計手冊[M].北京:化學工業(yè)出版社,2002
[4] 陳家瑞主編.汽車構造(下).北京:人民交通出版社.2000
[5] 《汽車工程手冊》編輯委員會.汽車工程手冊.北京:人民交通出版社.2001
[6] 李秀珍主編.機械設計基礎(第3版).北京:機械工業(yè)出版社,2003
[7] 吉林工業(yè)大學汽車教研室編.汽車設計.北京:機械工業(yè)出版社,1981
[8] 機械設計手冊委員會編.機械設計手冊第3卷.北京:機械工業(yè)出版社,2004
[9] 機械設計手冊委員會編. 機械設計手冊第2卷.北京:機械工業(yè)出版社,2004
[10] 劉鴻文主編.材料力學(第三版).北京:高等教育出版社,1993
[11] 機械設計手冊編委會.機械設計手冊 減速器和變速器[M].機械工業(yè)出版社,2007
[12] 沈綿主編.汽車底盤構造與檢修[M].北京:機械工業(yè)出版社,2006
[13] 彭文生等.機械設計與機械原理指南[M].華中理工大學出版社.1998
[14] Detached we Eddy si Lations Over a si lified Landing Gear.L.5.He dges ,A .L Travin[M].PR. Spalart. Journalfo FluidsEngineering.2002
[15] The Key Cballenges for Northerican Truck Manu facturers[M].Beyond Au tmootive design
production.JustinCok.2006
六、備注
指導教師簽字:
年 月 日
教研室主任簽字:
年 月 日
SY-025-BY-3
畢業(yè)設計(論文)開題報告
學生姓名
吳文強
系部
汽車與交通工程
專業(yè)、班級
車輛07-6班
指導教師姓名
趙國遷
職稱
高級實驗師
從事
專業(yè)
汽車運用技術
是否外聘
□是否
題目名稱
斯太爾重型車雙級主減速器
一、 課題研究現狀,選題的目的、依據和意義
1.重型車主減速器國外發(fā)展現狀:
重卡驅動是靠減速增扭來實現的,減速增扭則要通過車橋的核心部件減速器實現。重卡車橋的減速方式主要有單級減速橋、中央雙級減速橋和輪邊(雙級)減速橋。在歐、美重卡中雙級主減速器后驅動橋只占整個產品的40%,且有呈下降趨勢,在美國只占10%;日本采用該結構的產品更少。其原因是這些地區(qū)的道路較好,采用單級減速雙曲線螺旋錐齒輪副成本較低,故大部分均采用這種結構。而亞洲、非洲和南美國家則采用雙級主減速器的驅動橋,用于非道路和惡劣道路使用的車輛(工程自卸車等)。當地道路愈差則采用雙級主減速器驅動橋愈多,反之,則愈少。
國外汽車驅動橋已普遍采用限滑差速器、濕式行車制動器等先進技術。限滑差速器大大減少了輪胎的磨損,而濕式行車制動器則提高了主機的安全性能,簡化了維修工作。國內僅一部分車使牙嵌式差速器。限滑差速器成本較高,因而在多數國產驅動橋上一直沒有得到應用。目前向國內提供限滑差速器的制造商主要是美國TraCtech公司和德國采埃孚公司。美國Tractech公司在蘇州的工廠即將建成投產,主要生產牙嵌式、多片摩擦盤式差速器。[1]
2.重型車主減速器國內發(fā)展現狀:
我國2010年主流重卡企業(yè)市場高速發(fā)展,銷量幾乎全線飄紅,產銷再創(chuàng)歷史新高。其中,前三甲企業(yè)一汽,中國重汽,東風公司上半年重卡銷量均超過10萬年。半掛牽引車累計銷售201953量,銷售同比累計上升227.93%。其中40噸<準拖掛車上半年以前所未有的高速增長,開創(chuàng)了國產大噸位重卡的先河,說明了重卡市場正在向大噸位大馬力,高速化發(fā)展的趨勢。據我國工信部消息,2015年重卡市場的產能規(guī)劃在300萬量以上。在這樣的汽車行業(yè)市場需求下,作為汽車工業(yè)的重要配套行業(yè),中國車橋行業(yè)的產銷量同樣呈上升趨勢。隨著汽車行業(yè)的高速發(fā)展,汽車在節(jié)能,環(huán)保,舒適等方面的性能將顯著提升,這就要求車橋產品的性能進一步提高。車橋作為重卡的核心總成,其重要性受到越來越多的關注??萍嫉难该桶l(fā)展也將帶領未來重卡車橋朝著輕量化,大扭矩,長壽命和地生產成本的方向發(fā)展,同時技術含量高的驅動橋附件和電子技術將會得到廣泛的應用。
在我國重卡中單級橋因為橋包尺寸大,離地間隙小,導致通過性較差,應用范圍相對較小,雙級減速器的應用占有很大一部分比例。我國重卡大量使用的斯太爾驅動橋屬于典型的雙級減速器,其二級減速的結構,主減速器總成相對較小,橋包尺寸減小,因此離地間隙加大,通過性好,承載能力較大。廣泛用于公路運輸,以及石油,工礦,林業(yè),野外作業(yè)和部隊等多種領域的車輛。不過,雙級減速器也有傳動效率低,油耗高,結構相對復雜,產品價格高等缺點。
不管重型車的技術含量提升得多快,在未來10年大多數重型車的車橋和懸架結構不會有明顯的改變,傳統(tǒng)的結構和型式仍處于主導地位。在相同結構的基礎上推出各自車橋的亮點,是每一個專業(yè)廠必須不斷研究的問題。以前,各廠家主要是在載重噸位上進行競爭,但在國家法規(guī)的限定下,車橋的載重能力不可能有太多的增加,現在各專業(yè)廠家采用最多的方法是不斷增加車橋及其附件的技術含量,從橋殼的制造工藝、車橋的減速形式、車輪的制動方式等方面入手,通過吸收國外一些先進的技術,推出具有本企業(yè)特色、結構先進、承載能力強的車橋,不斷提升產品的制造質量及服務質量。
在齒輪減速形式上,從傳統(tǒng)的中央單級減速發(fā)展到了現在的中央及輪邊雙級減速或雙級主減速器結構,不但擴寬了車橋轉速比的范圍,有利于輸出轉速及輸出扭矩的調整。還由于把減速機構放到輪邊后,使得車橋中央的第一級減速比做得比較小,因此橋殼中部離地間距較大,能很好地滿足汽車通過性的要求。由于汽車高速行駛要求及法規(guī)對于噪音的控制要求,為了降低齒輪在高速運轉下的磨損,增加車橋的使用壽命,降低維修費用,車橋內部的主、從動齒輪、行星齒輪及圓柱齒輪逐漸采用精磨加。但由于精磨加工成本較高,因此在貨車車橋上的應用還不是很多,但這也是以后高速車橋發(fā)展的需要。[2]
3.意義:
對于重汽斯太爾等一些重型車來說,由于載荷巨大,所要求的傳動比大,所以減速器的設計至關重要。主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數少的錐齒輪帶動齒數多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動以改變動力方向。由于汽車在各種道路上行使時,其驅動輪上要求必須具有一定的驅動力矩和轉速,在動力向左右驅動輪分流的差速器之前設置一個主減速器后,便可使主減速器前面的傳動部件如變速器、萬向傳動裝置等所傳遞的扭矩減小,從而可使其尺寸及質量減小、操縱省力。
4.目的:
綜合運用機械設計、理論力學、材料力學、汽車構造、汽車理論、汽車設計等知識和繪圖技能,完成傳動裝置的測繪與分析,通過這一過程全面掌握汽車主減速器的結構、強度、制造、裝配以及表達等方面的知識,培養(yǎng)綜合分析、實際解決工程問題的能力。
二、 設計(論文)的基本內容,擬解決的主要問題
1.基本內容:
載貨汽車的有關參數
名稱
代號 參數
驅動形式
4×2
裝載質量/t
8.510
總質量/t
16
發(fā)動機最大功率/kw及轉速/r/min
- 140-2500
發(fā)動機最大轉矩/N.m及轉速/r/min
- 700-1400
輪胎型號
11.00-20
變速器傳動比
5.2
0.72
最高車速/km/h
92
在本畢業(yè)設計中,針對載貨汽汽車的整體式雙級主減速器進行設計,使之具有足夠的強度和剛度以及較高的傳動效率,通過對主減速器主要結構尺寸的計算,分析雙級主減速器的結構形式、特點及工作原理,進行主減速器總成及零部件的結構及尺寸設計,完成齒輪及軸承等的強度校核。繪制總裝配圖和主要零件圖,編寫設計說明書。
2.擬解決的主要問題:
驅動橋中主減速器的設計應滿足如下基本要求:
(1)所選擇的主減速比應能保證汽車既有最佳的動力性和燃料經濟性。
(2)外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音小。
(3)在各種轉速和載荷下具有高的傳動效率;與懸架導向機構與動協(xié)調。
(4)在保證足夠的強度、剛度條件下,應力求質量小,以改善汽車平順性。
(5)結構簡單,加工工藝性好,制造容易,拆裝、調整方便。
三、技術路線(研究方法)
主減速器結構方案分析
主減速器結構形式
主減速器設計計算
主、從動錐齒輪的支承方案
第一級齒輪設計計算
差速器及橋殼設計
第二級齒輪設計計算
軸的設計與校核
軸承的設計與校核
繪圖及編寫說明書
四、進度安排
第一周~第二周 (3月2日-3月15日) 查閱資料,學習主減速器設計,開題報告。
第三周 (3月16日-3月21日) 撰寫文獻綜述。
第四周~第六周 (3月22日-4月5日) 主減速器傳動比計算及主、從動錐齒輪齒數分配;主、從動錐齒輪設計計算和校核;
第七周~第九周(4月6日-4月28日) 二級主、從動圓柱齒輪齒數分配;主、從動圓柱齒輪設計計算和校核;
第十周 (4月29日5月9日) 軸承的選擇及箱體設計
第十一周~第十二周(5月10日-5月24日)繪制主減速器設計裝配圖及零件圖。
第十三周~第十四周(5月25日-6月7日) 修改圖紙、完成設計說明書。
第十五周~第十六周(6月8日-6月21日) 對圖紙及設計說明書進一步修改,對設計圖紙及設計說明書內容、格式、英文摘要等進行最終審查和修改。
第十七周 (6月22日-6月28日) 畢業(yè)答辯
主要參考資料
[1] 劉惟信主編. 汽車設計.北京:清華大學出版社
[2] 仙波正莊(日).行星齒輪傳動及應用[M].北京:機械工業(yè)出版社,1998
[3] 成大先.機械設計手冊[M].北京:化學工業(yè)出版社,2002
[4] 陳家瑞主編.汽車構造(下).北京:人民交通出版社.2000
[5] 《汽車工程手冊》編輯委員會.汽車工程手冊.北京:人民交通出版社.2001
[6] 李秀珍主編.機械設計基礎(第3版).北京:機械工業(yè)出版社,2003
[7] 吉林工業(yè)大學汽車教研室編.汽車設計.北京:機械工業(yè)出版社,1981
[8] 機械設計手冊委員會編.機械設計手冊第3卷.北京:機械工業(yè)出版社,2004
[9] 機械設計手冊委員會編. 機械設計手冊第2卷.北京:機械工業(yè)出版社,2004
[10] 劉鴻文主編.材料力學(第三版).北京:高等教育出版社,1993
[11] 機械設計手冊編委會.機械設計手冊 減速器和變速器[M].機械工業(yè)出版社,2007
[12] 沈綿主編.汽車底盤構造與檢修[M].北京:機械工業(yè)出版社,2006
[13] 彭文生等.機械設計與機械原理指南[M].華中理工大學出版社.1998
[14] 管曉忙等主編,斯太爾系列柴油車結構與維修[M].2009
[15] Detached we Eddy si Lations Over a si lified Landing Gear.L.5.He dges ,A .L Travin[M].PR. Spalart. Journalfo FluidsEngineering.2002
[16] The Key Cballenges for Northerican Truck Manu facturers[M].Beyond Au tmootive design
production.JustinCok.2006
六、備注
指導教師意見:
簽字: 年 月 日
6
黑龍江工程學院本科生畢業(yè)設計
摘 要
本設計是針對斯太爾重型車而進行的雙級主減速器設計。此雙級主減速器是由兩級齒輪減速組成。與單級主減速器相比,雙級減速器具有降低轉速,增大扭矩的特點,在保證離地間隙相同時可得到很大的傳動比,并且還擁有結構緊湊,噪聲小,使用壽命長等優(yōu)點。雙級主減速器與單級相比,在保證離地間隙相同時可得到大的傳動比,但是尺寸、質量均較大,成本較高。它主要應用于中、重型貨車、越野車和大客車上
該設計包含了雙級主減速器各零件參數的設計和校核。主要包括:主減速器結構的選擇、主動錐齒輪傳動比選擇與齒輪設計、從動錐齒輪的設計、軸承的選擇與校核,軸的選擇與校核。在設計中,要選擇正確的傳動比以滿足主從動錐齒輪的齒數分配,主減速器是汽車傳動系中減小降低轉速、增大扭矩的主要部件,它是依靠齒數少的錐齒輪帶動齒數多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動以改變動力的方向。
關鍵詞:載貨汽車;雙級主減速器;齒輪;校核;設計
ABSTRACT
This design is designs a structure to the truck to be reasonable, work related reliable two-stage main gear box. This two-stage main gear box is composed of two level of gear reductions. Compares with the single stage main gear box, when the guarantee ground clearance is the same may obtain the very great velocity ratio, and also has the structure to be compact, the noise is small, service life long and so on merits.Two-stage main reducer and a single-stage than in the same ground clearance to ensure a large transmission ratio available, but the size, quality are larger, higher cost. It is mainly used in medium and heavy trucks, SUVs and buses on
This article elaborated the two-stage main gear box each components parameter computation and the selection process, and through computation examination. The design mainly includes: Main gear box structure choice, host, driven bevel gear's design, bearing's examination. In the design, to select the correct gear ratio to satisfy the number of teeth of driving and driven bevel gear allocation The main reducer in the transmission lines used to reduce vehicle speed, increased the torque , it is less dependent on the bevel of more gear drive of less bevel gear . Purchase of the longitudinal engine automobiles, the main bevel gear reducer also used to change the driving force for the direction of transmission.
Key words: Truck;Two-stage Main Reduction Gear;Gear;Check
II
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 概述 1
1.1.1 主減速器的概述 1
1.1.2 國內外研究現狀 1
1.1.3 主減速器設計的要求 2
1.2 主減速器的結構方案分析 2
1.2.1 主減速器的齒輪類型 2
1.2.2 主減速器的減速形式 3
1.2.3 主減速器主、從動錐齒輪的支承方案 4
1.3 本設計主要內容及方案 5
第2章 主減速器的結構設計與校核 6
2.1 主減速器傳動比的計算 7
2.1.1 主減速比的確定 7
2.1.2 雙級主減速器傳動比分配 8
2.2 主減速齒輪計算載荷的確定 8
2.3 主減速器齒輪參數的選擇 11
2.4 主減速器螺旋錐齒輪的幾何尺寸計算與強度計算 12
2.4.1 主減速器螺旋錐齒輪的幾何尺寸計算 12
2.4.2 主減速器螺旋錐齒輪的強度校核 14
2.5第二級齒輪模數的確定 18
2.6雙級主減速器的圓柱齒輪基本參數的選擇 19
2.7齒輪的校核 20
2.8主減速器齒輪的材料及熱處理 21
2.9本章小結 22
第3章 軸的設計 23
3.1 一級主動齒輪軸的機構設計 23
3.2 中間軸的結構設計 24
3.3 本章小結 25
第4章 軸的校核 26
4.1 主動錐齒輪軸的校核 26
4.2中間軸的校核 27
4.3本章小結 29
第5章 軸承的選擇和校核 30
5.1主減速器錐齒輪上作用力的計算 30
5.2軸和軸承的設計計算 33
5.3主減速器齒輪軸承的校核 34
5.4本章小結 37
第6章 差速器設計 37
6.1 概述 37
6.2 差速器齒輪的基本參數選擇 37
6.3 差速器的幾何尺寸計算與強度計算 39
6.3.1 差速器齒輪的幾何尺寸計算 39
6.3.2 差速器齒輪的強度計算 41
6.4 本章小結 42
第7章 半軸設計 43
7.1 概述 43
7.2 半軸的設計與計算 43
7.2.1 全浮式半軸的設計計算 43
7.2.2 半軸的結構設計及材料與熱處理 45
7.3 本章小結 45
結論 46
致謝 47
參考文獻 48
附錄 49
第1章 緒 論
1.1 概述
1.1.1 主減速器的概述
主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數少的錐齒輪帶動齒數多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動以改變動力方向。由于汽車在各種道路上行使時,其驅動輪上要求必須具有一定的驅動力矩和轉速,在動力向左右驅動輪分流的差速器之前設置一個主減速器后,便可使主減速器前面的傳動部件如變速器、萬向傳動裝置等所傳遞的扭矩減小,從而可使其尺寸及質量減小、操縱省力[1]。
對于重型車來說,要傳遞的轉矩較乘用車和客車,以及輕型商用車都要大得多,以便能夠以較低的成本運輸較多的貨物,所以選擇功率較大的發(fā)動機,這就對傳動系統(tǒng)有較高的要求,而主減速器在傳動系統(tǒng)中起著非常重要的作用。
隨著目前國際上石油價格的上漲,汽車的經濟性日益成為人們關心的話題,這不僅僅只對乘用車,對于重型載貨汽車,提高其燃油經濟性也是各商用車生產商來提高其產品市場競爭力的一個法寶,因為重型載貨汽車所采用的發(fā)動機都是大功率,大轉矩的,裝載質量在十噸以上的載貨汽車的發(fā)動機,最大功率在140KW以上,最大轉矩也在700Nm以上,百公里油耗是一般都在34L左右。為了降低油耗,不僅要在發(fā)動機的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。
因此,在發(fā)動機相同的情況下,采用性能優(yōu)良且與發(fā)動機匹配性比較高的傳動系便成了有效節(jié)油的措施之一。所以設計新型的主減速器已成為了新的課題。
1.1.2 國內外研究現狀
據我國工信部消息,2015年重卡市場的產能規(guī)劃在300萬量以上。在這樣的汽車行業(yè)市場需求下,作為汽車工業(yè)的重要配套行業(yè),中國車橋行業(yè)的產銷量同樣呈上升趨勢。隨著汽車行業(yè)的高速發(fā)展,汽車在節(jié)能,環(huán)保,舒適等方面的性能將顯著提升,這就要求車橋產品的性能進一步提高。車橋作為重卡的核心總成,其重要性受到越來越多的關注。科技的迅猛發(fā)展也將帶領未來重卡車橋朝著輕量化,大扭矩,長壽命和地生產成本的方向發(fā)展,同時技術含量高的驅動橋附件和電子技術將會得到廣泛的應用。
在我國重卡中單級橋因為橋包尺寸大,離地間隙小,導致通過性較差,應用范圍相對較小,雙級減速器的應用占有很大一部分比例。我國重卡大量使用的斯太爾驅動橋屬于典型的雙級減速器,其二級減速的結構,主減速器總成相對較小,橋包尺寸減小,因此離地間隙加大,通過性好,承載能力較大。廣泛用于公路運輸,以及石油,工礦,林業(yè),野外作業(yè)和部隊等多種領域的車輛。不過,雙級減速器也有傳動效率低,油耗高,結構相對復雜,產品價格高等缺點。
在歐、美重卡中雙級主減速器后驅動橋只占整個產品的40%,且有呈下降趨勢,在美國只占10%;日本采用該結構的產品更少。其原因是這些地區(qū)的道路較好,采用單級減速雙曲線螺旋錐齒輪副成本較低,故大部分均采用這種結構。而亞洲、非洲和南美國家則采用雙級主減速器的驅動橋,用于非道路和惡劣道路使用的車輛(工程自卸車等)。當地道路愈差則采用雙級主減速器驅動橋愈多,反之,則愈少。
國外汽車驅動橋已普遍采用限滑差速器、濕式行車制動器等先進技術。限滑差速器大大減少了輪胎的磨損,而濕式行車制動器則提高了主機的安全性能,簡化了維修工作。國內僅一部分車使牙嵌式差速器。限滑差速器成本較高,因而在多數國產驅動橋上一直沒有得到應用。目前向國內提供限滑差速器的制造商主要是美國TraCtech公司和德國采埃孚公司。美國Tractech公司在蘇州的工廠即將建成投產,主要生產牙嵌式、多片摩擦盤式差速器。
1.1.3 主減速器設計的要求
主減速器的設計應滿足如下基本要求[1]:
1、所選擇的主減速比應能保證汽車既有最佳的動力性和燃料經濟性。
2、外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音小。
3、在各種轉速和載荷下具有高的傳動效率;與懸架導向機構與動協(xié)調。
4、在保證足夠的強度、剛度條件下,應力求質量小,以改善汽車平順性。
5、結構簡單,加工工藝性好,制造容易,拆裝、調整方便。
本設計主要研究雙級主減速器的結構與工作原理,并對其主要零部件進行了強度校核。
1.2 主減速器的結構方案分析
主減速器的結構型式主要是根據其齒輪類型、主、從動齒輪的安置方法以及減速形式的不同而異[2]。
1.2.1主減速器的齒輪類型
根據主減速器的使用目的和要求的不同,其結構形式也有很大差異。按主減速器所處的位置可分為中央主減速器和輪邊減速器,按參加減速傳動的齒輪副可分為單級式主減速器和雙級式主減速器。按主減速器速比的變化可分為單速主減速器和雙速主減速器兩種。按齒輪副結構形式可分為圓柱齒輪式和圓錐齒輪式兩種。按齒型的不同,又分為螺旋錐齒輪和雙曲面錐齒輪。他們有著不同的特點:
螺旋錐齒輪,其主、從動齒輪軸線相交于一點,交角可以是任意的,但在絕大多數的汽車驅動橋上,主減速齒輪副都是采用交角的布置。由于輪齒端面重疊的影響,至少有兩對以上的齒輪同時嚙合,因此,螺旋錐齒輪能承受大的負荷。加之其齒輪不是在齒的全長上同時嚙合,而是逐漸地由齒的一端連續(xù)而平穩(wěn)地轉向另一端,使得其工作平穩(wěn),即使在高速運轉時,噪聲和振動也很小。傳動效率高,能達到99%,生產成本也較低,不需要特殊的潤滑,工作穩(wěn)定性能好。但對嚙合精度很敏感。
雙曲面齒輪的特點是主、從動齒輪的軸線相互垂直而不相交,主動齒輪軸線相對從動齒輪軸線在空間偏移一距離。雙曲面齒輪傳動不僅提高了傳動平穩(wěn)性,而且使齒輪的彎曲強度提高約30%,齒面的接觸強度提高,選用較少的齒數,有利于增加傳動比和降低轎車車身高度,并可減小車身地板中部凸起通道的高度,從而得到更大的離地間隙,利于實現汽車的總體布置等優(yōu)點。但雙曲面齒輪加工工藝要求比較高。
本文設計的雙級主減速器第一級選取弧齒錐齒輪,第二級選取圓柱齒輪。(如圖1.1所示)
a)螺旋錐齒輪傳動 b)雙曲面齒輪傳動 c)圓柱齒輪傳動 d)蝸桿傳動
圖1.1 主減速器齒輪傳動形式
1.2.2主減速器的減速形式
為了滿足不同的使用要求,主減速器的結構形式也是不同的[8]。
根據主減速器的使用目的和要求的不同,其結構形式也有很大差異。按主減速器所處的位置可分為中央主減速器和輪邊減速器,按參加減速傳動的齒輪副可分為單級式主減速器和雙級式主減速器。按主減速器速比的變化可分為單速主減速器和雙速主減速器兩種。單級式主減速器應用于轎車和一般輕、中型載貨汽車。雙級式主減速器應用于大傳動比的中、重型汽車上,若其第二級減速器齒輪有兩副,并分置于兩側車輪附近,實際上成為獨立部件,則稱輪邊減速器。
由于本文設計的是斯太爾重型汽車主減速器,由于它的主傳動比比較大,故選用二級主減速器[3][4]。
1.2.3 主減速器主、從動錐齒輪的支承方案
主減速器中心必須保證主從動齒輪具有良好的嚙合狀況,才能使它們很好地工作。齒輪的正確嚙合,除了與齒輪的加工質量裝配調整及軸承主減速器殼體的剛度有關以外,還與齒輪的支承剛度密切相關。
1、主動錐齒輪的支承
主動錐齒輪的支承形式可分為懸臂式支承和騎馬式支承兩種。查閱資料、文獻,經方案論證,采用懸臂式支承結構(如圖1.2(a)所示)。
1—調整墊片 2—調整墊圈
(a)懸臂式支承 (b)騎馬式支承
圖1.2主動錐齒輪的支承型式
2、從動錐齒輪的支承
從動錐齒輪采用圓錐滾子軸承支承(如圖1.3所示)。為了增加支承剛度,兩軸承的圓錐滾子大端應向內,以減小尺寸。為了使從動錐齒輪背面的差速器殼體處有足夠的位置設置加強肋以增強支承穩(wěn)定性,應不小于從動錐齒輪大端分度圓直徑的70%。為了使載荷能均勻分配在兩軸承上,應是等于或大于。
圖1.3從動錐齒輪的支承型式
1.3 本設計的主要內容及方案
其主要的內容為有:1.主減速比的計算;2.主減速比的分配;3.一級齒輪傳動機構的設計和校核;4.二級齒輪傳動的設計和校核;5. 軸的設計;6.軸承的選擇和校核。為了達到增大離地間隙和柱減速器的功能要求,在這些內容中最重要的是如何合理的分配好主減速比。在這個過程中,只有反復的通過計算,不斷調整一、二級的減速比。方可達到設計目的。
主要方案:運用齒輪傳動原理,先用圓錐齒輪改變其轉矩的方向,并同時達到減速增扭的目的。然后再通過圓柱齒輪副最終達到我們自己所需要的速度和扭矩。
第2章 主減速器的結構設計與校核
2.1 主減速器傳動比的計算
斯太爾重型車的參數如下表2.1:
表2.1基本參數表
名稱
代號 參數
驅動形式
4×2
裝載質量/t
8.510
總質量/t
16
發(fā)動機最大功率/kw及轉速/r/min
- 140-2500
發(fā)動機最大轉矩/N.m及轉速/r/min
- 700-1400
輪胎型號
11.00-20
變速器傳動比
5.2
0.72
最高車速/km/h
92
由上表可知該重型車的輪胎型號為11.00-20,其中20為輪胎名義尺寸D、單位為英寸。11.00為輪胎的寬B、單位也為英寸。b為輪緣高度尺寸(單位mm),在這里取B=14.00(如圖2.1所示):重型車設計選用的輪胎是加深花紋的輪胎[劉惟信版《汽車設計》表2-20],型號為11.00-20,可查得輪胎的滾動半徑為[1]:rr =516.58139mm。
圖2.1 輪胎的斷面圖
2.1.1 主減速比的確定
主減速比對主減速器的結構型式、輪廓尺寸、質量大小以及當變速器處于最高檔位時汽車的動力性和燃料經濟性都有直接影響。的選擇應在汽車總體設計時和傳動系的總傳動比一起由整車動力計算來確定。可利用在不同下的功率平衡圖來研究對汽車動力性的影響。對發(fā)動機與傳動系參數作最佳匹配的方法來選擇可使汽車獲得最佳的動力性和燃料經濟性[5]。
對于具有很大功率儲備的轎車、長途公共汽車尤其是競賽車來說,在給定發(fā)動機最大功率P及其轉速的情況下,所選擇的值應能保證這些汽車有盡可能高的最高車速。這時值應按下式來確定:
(2.2)
式中 ——車輪的滾動半徑,==0.5166,單位;
——變速器最高檔傳動比;
——最高車速;
——發(fā)動機最大功率時的轉速。
對于其他汽車來說,為了得到足夠的功率儲備而最高車速稍有下降,一般選得比上式求得的大10%~25%,即按下式選擇:
=(0.377~0.472) (2.3)
式中 ——車輪的滾動半徑,m;
——變速器最高檔傳動比;
——分動器和加力器的最高檔傳動比;
——輪邊減速器的傳動比。
本設計中沒有分動器和加力器,所以=1;也沒有輪邊減速器,所以=1。按以上兩式求得的值應該與同類汽車的相應值作比較,并考慮到主、從動主減速器齒輪可能有的齒數,將值予以校正并最后確定下來。由式(2.2)得,取功率儲備系數為0.377,即:
=0.377 (2.4)
把=0.51658、=2500r/min、=90km/h、=1、=1、=0.72代入式(2.4)中,即得=7.40。并與同類汽車比較也傳動比也相差不大,最終確定=7.40。因為較大,所以采用雙級主減速器。
2.1.2 雙級主減速器傳動比分配
一般情況下第二級減速比與第一級減速比之比值(/)約在1.4~2.0范圍內,而且趨于采用較大的值,以減小從動錐齒輪的半徑及負荷,并適當增多主動錐齒輪的齒數,使后者的軸徑適當增大以提高其支承剛度[6][7];這樣也可降低從動圓柱齒輪以及各零件的負荷從而可適當減小其尺寸及質量。在這里取/=1.68。一般,雙級主減速器第一主動錐齒輪的齒數多在9~15范圍內[8],我們在這里取最大=15,則可算得:=,其===3.52。
2.2 主減速齒輪計算載荷的確定
通常是將發(fā)動機最大轉矩配以傳動系最低檔傳動比時和驅動車輪打滑時兩種情況下作用于主減速器從動齒輪上的轉矩(、)的最小者,作為載貨汽車和越野汽車在強度計算中用以驗算主減速器從動齒輪最大應力的計算載荷。即
=/ (2.5)
= (2.6)
式中 ——發(fā)動機最大轉矩,
——由發(fā)動機到所計算的主減速器從動齒輪之間的傳動系最低檔傳動比,
==5.22.1=10.92;
——上述傳動部分的效率,取=0.9;
——超載系數,對于一般重型汽車、礦用汽車和越野車以及液力傳動的各類
汽車取=1;
——該車的驅動橋數目,在這里=1;
——汽車滿載時一個驅動橋給水平地面的最大負荷,N;對后橋來說應該考慮到汽車加速時的負荷增大;
——輪胎對路面的附著系數,對于安裝一般輪胎的公路用汽車,取=0.85,對于越野汽車取=1.0,對于安裝專門的防滑寬輪胎的高級轎車取=1.25;
——車輪的滾動半徑,0.5166m;
——分別為由所計算的主減速器從動齒輪到驅動輪之間的傳動效率和減速比(例如輪邊減速器等),在這里取,。
由表2-1中可知,把=700()代入式(2-5)得:
=/
=700×5.2×2.1×0.9/1
=6879.6 () (2.7)
各類汽車軸荷分配范圍如下圖:
表2.2 驅動橋質量分配系數
車型
空載
滿載
前軸
后軸
前軸
后軸
轎車
前置發(fā)動機前輪驅動
56%~66%
34%~44%
47%~60%
40%~53%
前置發(fā)動機后輪驅動
50%~55%
45%~50%
45%~50%
50%~55%
后置發(fā)動機后輪驅動
42%~59%
41%~50%
40%~45%
55%~60%
貨車
4×2后輪單胎
50%~59%
41%~50%
32%~40%
60%~68%
4×2后輪雙胎,長頭、短頭車
44%~49%
51%~55%
27%~30%
70%~73%
4×2后輪雙胎,平頭車
49%~54%
46%~51%
32%~35%
65%~68%
6×4后輪雙胎
31%~37%
63%~69%
19%~24%
76%~81%
本文設計車型為4后輪雙胎,平頭車,滿載時前軸的負荷在32%~35%,取34%;后軸為65%~68%,取66%。該車滿載時的總質量為=16,則可求得前后軸的軸荷和
=0.34=0.34161039.8 (2.8)
=0.66=0.66161039.8=106624N (2.9)
把式(2.1)和式(2.9)的值代入式(2.6),可得
=
=13572 () (2.10)
取,即26044.2 ()為強度計算中用以驗算主減速器從動齒輪最大應力的計算載荷。
對于公路車輛來說,使用條件較非公路車輛穩(wěn)定,其正常持轉矩是根據所謂平均牽引力的值來確定的,即主加速器的平均計算轉矩為
= (2.11)
式中:——汽車滿載總重1.6×9.8
——所牽引的掛車滿載總重,N,僅用于牽引車取=0;
——道路滾動阻力系數,載貨汽車的系數在0.015~0.020;初選=0.016;
——汽車正常使用時的平均爬坡能力系數。貨車和城市公共汽車通常取0.05~0.09,可初取=0.07;
——汽車性能系數
(2.12)
當 =46.41>16時,取=0。
,,,,等見式(2.5)(2.6)下的說明。
把上面的已知數代入式(2.11)可得:
==2019.36() (2.13)
2.3 主減速器齒輪參數的選擇
1、齒數的選擇
對于普通雙級主減速器,由于第一級減速比比第二級的小一些,這時第一級主動錐齒輪的齒數可選得較大些,約在9~15范圍內。第二級圓柱齒輪的傳動齒數和可選在68的范圍內。在這里我們選擇=15。則=152.1=31.5取,修正第一級的傳動比=2.07;。
2、節(jié)圓直徑的選擇
節(jié)圓直徑的選擇可根據從動錐齒輪的計算轉矩(見式2-5,式2-6中取兩者中較小的一個為計算依據)按經驗公式選出:
(2.14)
式中:——直徑系數,取=13~16;
——計算轉矩,,取,中較小的,第一級所承受的轉矩:
==9106.36() (2.15)
把式(2.15)代進式(2.14),初取=248。
3、齒輪端面模數的選擇
當選定后,可按式可算出從動齒輪大端模數,。
4、齒面寬的選擇
汽車主減速器螺旋錐齒輪(從動)齒面寬度推薦為:
F2=0.155=38.252,可初取F=38mm。
主動錐齒輪:
F1=(1+%10) F2=41.8mm,取42mm。
5、螺旋錐齒輪螺旋方向
一般情況下主動齒輪為左旋,從動齒輪為右旋,以使二齒輪的軸向力有互相斥離的趨勢[2]。
6、螺旋角的選擇
螺旋角應足夠大以使齒面重疊系數1.25。因愈大傳動就越平穩(wěn)噪聲就越低。螺旋角過大時會引起軸向力亦過大,因此應有一個適當的范圍。在一般機械制造用的標準制中,螺旋角推薦用35°[9]。
7、齒輪法向壓力角的選擇
根據格里森規(guī)定載貨汽車和重型汽車則應分別選用20、22的法向壓力角。則在這里選擇的壓力角為。
2.4 主減速器螺旋錐齒輪的幾何尺寸計算與強度計算
2.4.1 主減速器螺旋錐齒輪的幾何尺寸計算
表2.3 雙級主減速器一級齒輪的幾何尺寸計算用表
序號
項 目
計 算 公 式
計 算 結 果
1
主動齒輪齒數
15
2
從動齒輪齒數
31
3
大端模數
8
4
齒面寬
=38
5
工作齒高
13.6
6
全齒高
=15.104
7
法向壓力角
=
8
軸交角
=90°
9
節(jié)圓直徑
=
120
=248
10
節(jié)錐角
arctan
=90°-
=
=64.2°
11
節(jié)錐距
A==
A=137.90
12
周節(jié)
t=3.1416 m
t=3.1416
13
齒頂高
=9.192
=4.408
14
齒根高
=
=5.912
=10.696
15
徑向間隙
c=
c=1.504
16
齒根角
=2.46
=4.44
17
面錐角
;
=30.24
=66.66
18
根錐角
;
=23.34°
=59.76°
19
齒頂圓直徑
=
=136.55
=251.80
20
節(jié)錐頂點至齒輪外緣距離
=144.81
=50.19
21
理論弧齒厚
==10
22
齒側間隙
=0.254~0.330
0.260mm
23
螺旋角
=35°
2.4.2 主減速器螺旋錐齒輪的強度校核
在完成主減速器齒輪的幾何計算之后,應對其強度進行計算,以保證其有足夠的強度和壽命以及安全可靠性地工作。在進行強度計算之前應首先了解齒輪的破壞形式及其影響因素。
螺旋錐齒輪的強度計算:
1、主減速器螺旋錐齒輪的強度計算
單位齒長上的圓周力,如圖2.2所示:
(2.16)
式中:——單位齒長上的圓周力,N/mm;
P——作用在齒輪上的圓周力,N,按發(fā)動機最大轉矩和最大附著力矩兩種載荷工況進行計算;
——從動齒輪齒寬,及=。
圖2.2 主動錐齒輪受力圖
按發(fā)動機最大轉矩計算時:
=1396 (2.17)
按最大附著力矩計算時:
=7099.70 (2.18)
上式中: ——后輪承載的重量,單位;
——輪胎與地面的附著系數,查劉惟信版《汽車設計》表9-13,=0.85;
——輪胎的滾動半徑,;
——從動輪的直徑,。
可得到載貨汽車一檔時的單位齒長上的圓周力=1429。式(2.17)所算出來的值小于,所以符合要求,雖然附著力矩產生的p很大,但由于發(fā)動機最大轉矩的限制p最大只有1429??芍:顺晒?。
2、輪齒的彎曲強度計算
汽車主減速器螺旋錐齒輪輪齒的計算彎曲應力為 (2.19)
式中:——超載系數1.0;
——尺寸系數==0.75;
——載荷分配系數,當一個齒輪用騎馬式支承型式時,=1.10~1.25;取=1.1;
——質量系數,對于汽車驅動橋齒輪,檔齒輪接觸良好、節(jié)及徑向跳動精度高時,取1;
——端面模數,。=8;
——齒面寬度,;
——齒輪齒數;
——齒輪所受的轉矩,;
J——計算彎曲應力用的綜合系數,見圖2.3。
圖2.3 彎曲計算用綜合系數J
由上圖可查得:小齒輪系數0.27,大齒輪系數0.205;把這些已知數代入式(2.19)可得:
=
=496.53
=
=634.4
汽車驅動橋的齒輪,承受的是交變負荷,其主要損壞形式是疲勞。其表現是齒根疲勞折斷和由表面點蝕引起的剝落。按中最小的計算時,汽車主減速器齒輪的許用應力為700(或按不超過材料強度極限的75%)。根據上面計算出來的,它們都小于700,所以校核成功。
3、輪齒的接觸強度計算
螺旋錐齒輪齒面的計算接觸應力(MPa)為:
(2.20)
式中:——材料的彈性系數,對于鋼制齒輪副取232.6;
,,——見式(2-19)下的說明,即=1,=1.1,=1;
——尺寸系數,它考慮了齒輪的尺寸對其淬透性的影響,在缺乏經驗的情況下,可取1;
——表面質量系數,對于制造精確的齒輪可取1;
——主動齒輪的計算轉矩;
—— 計算應力的綜合系數,見圖2.4所示,可查的
圖2.4 接觸強度計算綜合系數J
按發(fā)動機輸出的轉矩計算可得:
=
=2110
汽車主減速器齒輪的許用接觸應力為:當按式(2.5),(2.6)中較小者計算時許用接觸應力為2800,小于2800,所以校核成功。
2.5第二級齒輪模數的確定
1、材料的選擇和應力的確定
齒輪所采用的鋼為20CrMnTi滲碳淬火處理,齒面硬度為56~62HRC,,[9]。由于齒輪在汽車倒檔時工作的時間很少,并且一檔時的轉矩比倒檔時的轉矩大,所有我們可以認為齒輪只是單向工作。斜齒圓柱齒輪的螺旋角可選擇在16°~20°這里取=16°,法向壓力角=。
由=3
.52,=68=58~78 取=63得=14,=49,修正傳動比,其二級從動齒輪所受的轉矩。
取 [查李仲生主編的《機械設計》書表11-5];取[查李仲生主編的《機械設計》書表11-4]得:
=680(輪齒彎曲許用應力)
(輪齒接觸許用應力)
2、齒輪的彎曲強度設計計算
=680 (2.21)
式中:——載荷系數,齒輪按8級精度制造??;
——所計算齒輪受的轉矩;
——齒寬;
——計算齒輪的分度圓直徑;
——模數;
——齒型系數,由當量齒數==14.58,=
即可得=3.0;[查李仲生主編的《機械設計》書圖11-8];
——應力修正系數,可得=1.50,[由查李仲生主編的《機械設計》書圖11-9]。
因 ﹥
故應對小齒輪進行彎曲強度計算:
法向模數
式中:——齒寬系數,=0.8,[查李仲生主編的《機械設計》書(表11.6)]。
把已知數代入上式得:
==8.06
由李仲生主編的《機械設計》書表4-1取8[10]。
2.6雙級主減速器的圓柱齒輪基本參數的選擇
正常齒標準斜齒圓柱齒輪傳動的幾何尺寸見表2-4
表2.4正常齒標準斜齒圓柱齒輪傳動的幾何尺寸計算
名稱
代號
計算公式
齒頂高
=,其中
頂隙
=,其中
齒根高
=+=
齒高
=+=
分度圓直徑
=
頂圓直徑
=+=+2
根圓直徑
=-=-
中心距
==
= =259mm,==8mm,==2mm,
=+=10mm,=+=2.25=18mm,=110mm,
408mm,=126mm,==424mm,
90,,
齒寬88,在這里取b2=90mm,。
2.7齒輪的校核
1、齒輪彎曲強度校核
主、從動齒輪的彎曲強度,把上面已知數據代入式(2.21)得:
547.22
494.04
齒輪的彎曲強度滿足要求。
2、齒面接觸強度校核
=1500 (2.22)
式中:——材料彈性系數,=2.5;
——節(jié)點區(qū)域系數,=189.8;
——螺旋角系數,==0.98;
——齒數比,=2.52;
主動齒輪的齒面接觸強度為:
=2.50.98
=1453.15
主動齒輪的齒面接觸強度符合要求。
從動齒輪的齒面接觸強度為:
=2.50.98
=836.6
從動齒輪的齒面接觸強度也符合要求。根據上面的校核,一級和二級減速齒輪都滿足要求,校核成功。
2.8主減速器齒輪的材料及熱處理
驅動橋錐齒輪的工作條件是相當惡劣的,與傳動系的其它齒輪相比,具有載荷大,作用時間長,載荷變化多,帶沖擊等特點。其損壞形式主要有齒輪根部彎曲折斷、齒面疲勞點蝕(剝落)、磨損和擦傷等。根據這些情況,對于驅動橋齒輪的材料及熱處理應有以下要求:
1、具有較高的疲勞彎曲強度和表面接觸疲勞強度,以及較好的齒面耐磨性,故齒表面應有高的硬度;
2、輪齒心部應有適當的韌性以適應沖擊載荷,避免在沖擊載荷下輪齒根部折斷;
3、鋼材的鍛造、切削與熱處理等加工性能良好,熱處理變形小或變形規(guī)律易于控 制,以提高產品的質量、縮短制造時間、減少生產成本并將低廢品率;
4、選擇齒輪材料的合金元素時要適合我國的情況。
汽車主減速器用的螺旋錐齒輪以及差速器用的直齒錐齒輪,目前都是用滲碳合金鋼制造,齒輪所采用的鋼為20CrMnTi[11]。
用滲碳合金鋼制造的齒輪,經過滲碳、淬火、回火后,輪齒表面硬度應達到58~64HRC,而心部硬度較低,當端面模數>8時為29~45HRC[12]。
由于新齒輪接觸和潤滑不良,為了防止在運行初期產生膠合、咬死或擦傷,防止早期的磨損,圓錐齒輪的傳動副(或僅僅大齒輪)在熱處理及經加工(如磨齒或配對研磨)后均予與厚度0.005~0.010~0.020mm的磷化處理或鍍銅、鍍錫。這種表面不應用于補償零件的公差尺寸,也不能代替潤滑。
對齒面進行噴丸處理有可能提高壽命達25%。對于滑動速度高的齒輪,為了提高其耐磨性,可以進行滲硫處理。滲硫處理時溫度低,故不引起齒輪變形。滲硫后摩擦系數可以顯著降低,故即使?jié)櫥瑮l件較差,也會防止齒輪咬死、膠合和擦傷等現象產生[11]。
2.9本章小結
本章通過所給的參數對總傳動比的確定,并通過自己所設計的載貨汽車的基本情況,參照現有的車型,合理分配一、二級的傳動比。通過經驗公式對一級、二級嚙合齒輪的齒數和模數進行設計,選擇齒輪所用的材料,并通過強度校核公式對所設計的齒輪進行校核。使得齒輪符合強度和剛度的要求,并得出符合要求的齒輪參數,同時對傳動比進行修正。
第3章 軸的設計
3.1 一級主動齒輪軸的機構設計
由上面所設計出來的齒輪的大小和軸承的大小,裝配時所要求的間隙等,參照現有車型對軸進行結構設計,(如圖3-1),可得到主動一級主動齒輪的基本尺寸大小,并滿足其所要的要求。
圖3.1 一級主動齒輪軸
其軸的各段的尺寸為:
第1段:主動錐齒輪,其齒寬為42,大端分度圓直徑為120,齒頂圓直徑為136.55;
第2段:這段與軸承配合,其軸的直徑為80,長度為25。其選用的軸承代號為30216,其小徑為80,大徑為140;
第3段:大端直徑為80,小端直徑為60,長度為20;
第4段:軸直徑為60,長度為25mm;
第5段:大端直徑為75,小端直徑為60,其1、2、3、4、5段的總長為135;
第6段:這段與軸承配合,軸的直徑為65,長度為22。其選用的軸承代號為30212。
第7段:花鍵軸,直徑為60,花鍵軸長度為65;
第8段:螺栓軸,螺栓直徑為M30。螺栓長度為58。
由計算可得主動錐齒輪的總長度為280。
3.2 中間軸的結構設計
對于中間軸的結構,二級主動齒輪和中間軸加工成一體,其上面還要有一個與一級從動錐齒輪的裝配凸臺,兩個支承軸承和相應要求的間隔。(如圖3.2所示):
圖3.2中間軸的結構尺寸
其軸的各段尺寸為:
第1段:第一段與軸承想配合,直徑為80mm,軸的長度為26mm;軸承代號30212;
第2段:這段為了滿足主減速器的殼體與零件之間的距離,其直徑設計為74mm,長度為30mm;
第3段:二級主動斜齒圓柱齒輪,齒寬為94mm,分度圓直徑為110mm,齒頂圓為126mm;
第4段:主要是為了使一級從動齒輪與二級主動齒輪之間有一定的距離,直徑為74mm,長度為25mm;
第5段:一級從動輪凸臺,與其從動錐齒輪配合,它的直徑與從動錐齒輪的與其配合部分的尺寸相同;
第6段:與從動錐齒輪用螺栓連接的圓盤,軸的直徑為196mm,厚度為12mm;
第7段:作用是為了加工時方便和減小軸的質量,軸的直徑為50mm,長度為5mm;
第8段:與第1段一樣和相同的軸承配合,并保證零件間的間隙,其設計尺寸同第1段相同。
3.3 本章小結
通過設計的零件的結構大小,軸與箱體的配合,各零件之間的間隙等,設計出符合強度要求的軸。使其它能安全可靠的工作。
第4章 軸的校核
4.1 主動錐齒輪軸的校核
由第3章可知,齒輪上受到的轉矩為6879.65,齒輪的圓周力,軸向力,徑向力,并還知道兩軸承受徑向力和軸向力分別為,;,。其軸承所受的軸向力與軸受到的軸向力是一對作用了與反作用力,徑向力也是一對作用力與反作用了。規(guī)定齒輪受的軸向力和徑向力為正,(由圖4.1),前、后軸承給軸的力的方向分別與圓錐齒輪受的力方向相反,則為負;徑向力為正,為負。后面花鍵軸和螺栓軸可以不用計算,其結果不受多大影響。
圖4.1 主動錐齒輪軸受力圖
求出水平面上的彎矩并畫出彎矩圖:
=1682.55 (4.1)
規(guī)定順時針方向為負,其齒輪受到的彎矩為正,后齒輪受到的彎矩為負,前齒輪受到的彎矩為正,(如圖4.2所示):
圖4.2 垂直面上彎矩圖
求出垂直面上的彎矩并畫出彎矩圖:
==935.48 (4.2)
根據上面的方向,彎矩圖(如圖4.3所示):
圖4.3 垂直面上彎矩圖
合成彎矩可得:
= =1923.26 (4.3)
由上面的圖可知,在后軸承受力點上的彎矩最大,其彎矩為:
計算危險截面上的軸的直徑,軸的材料選擇20CrMnTi,經過調質等處理,彎曲許用應力,則:
=59.78 (4.4)
由于截面處軸的直徑為80,最小處的直徑也大于59.78,所以校核成功。
4.2中間軸的校核
(如圖4.4),有第3章可知,從動錐齒輪受到的圓周力,軸向力,徑向力;主動圓柱齒輪受到的圓周力21736.66,軸向力,徑向力;軸承C所受的軸向力,徑向力;軸承D所受的軸向力,徑向力。
圖4.4 中間軸受力圖
求出水平面上的彎矩并畫出彎矩圖:
=1066.38
=160.91
=422.32
=1105.29
規(guī)定順時針方向為負,其齒輪受到的彎矩為正,后齒輪受到的彎矩為負,前齒輪受到的彎矩為正,(如圖4.5所示):
圖 4.5 垂直面上彎矩圖
求出垂直面上的彎矩并畫出彎矩圖:
=0
=1051.82
=
=
根據規(guī)定的方向,(如圖4.6所示):
圖4.6 垂直面上的彎矩圖
由上圖可知,在A點的垂直面上的彎矩最大,最危險。這一點的合成彎矩得:
=1497.83 (4.5)
計算危險截面上的軸的直徑,軸的材料選擇20CrMnTi,經過調質等處理,彎曲許用應力,則:
=50.01
由于截面處軸的直徑為186,最小處的直徑也大于50.01,所以校核成功。
4.3本章小結
通過本章對軸的校核,軸滿足其要求,對它所受的彎矩計算有更深的認識,對自己的計算水平有一定的提高,對將來對軸的設計和校核積累了寶貴的經驗。
第5章 軸承的選擇和校核
5.1主減速器錐齒輪上作用力的計算
1、錐齒輪齒面上的作用力
錐齒輪在工作過程中,相互嚙合的齒面上作用有一法向力。該法向力可分解為沿齒輪切向方向的圓周力、沿齒輪軸線方向的軸向力及垂直于齒輪軸線的徑向力。
為計算作用在齒輪的圓周力,首先需要確定計算轉矩。汽車在行駛過程中,由于變速器擋位的改變,且發(fā)動機也不全處于最大轉矩狀態(tài),故主減速器齒輪的工作轉矩處于經常變化中。實踐表明,軸承的主要損壞形式為疲勞損傷,所以應按輸入的當量轉矩進行計算。作用在主減速器主動錐齒輪上的當量轉矩可按下式計算:?。?.1)
式中:——發(fā)動機最大轉矩,在此取700;
,…——變速器在各擋的使用率,可參考表5.1選?。?
,…——變速器各擋的傳動比;
,…——變速器在各擋時的發(fā)動機的利用率,可參考表5.1選?。?
表5.1 及的參考值
車型
變速器
檔位
轎車
公共汽車
載貨汽車
Ⅲ擋
Ⅳ 擋
Ⅳ擋
Ⅳ擋帶超速擋
Ⅳ擋
Ⅳ擋帶超速擋
Ⅴ擋
<80
>80
Ⅰ擋
1
1
0.8
2
1
1
0.5
0.5
Ⅱ擋
9
4
2.5
6
4
3
3.5
2
Ⅲ擋
90
20
16
27
15
11
7
5
Ⅳ擋
75
80.7
65
50
85
59
15
Ⅴ擋
─
─
77.5
超速擋
30
30
Ⅰ擋
60
70
65
70
70
50
50
50
Ⅱ擋
60
65
60
70
70
60
60
60
Ⅲ擋
50
60
50
60
60
70
70
70
Ⅳ擋
60
50
60
60
60
70
70
Ⅴ擋
─
─
60
超速擋
75
70
注:表中,其中——發(fā)動機最大轉矩,;——汽車總重力,kN。
經計算為668.82。
2、齒寬中點處的圓周力
齒寬中點處的圓周力為
= N (5.2)
式中:——作用在主減速器主動錐齒輪上的當量轉矩見式(5.1);
——該齒輪的齒面寬中點處的分度圓直徑;對于螺旋錐齒輪
(5.3)
式中:——主、從動齒面寬中點分度圓的直徑;
——從動齒輪齒寬;
——從動齒輪節(jié)圓直徑;
——主、從動齒輪齒數;
——從動齒輪的節(jié)錐角。
由式(5.12)可以算出:92.7,253.05。
按式(5.11)主減速器主動錐齒輪齒寬中點處的圓周力==14429.77N
主動錐齒輪齒寬中點處的圓周力= =14429.77N。
3、錐齒輪的軸向力和徑向力
一級減速機構作用在主、從動錐齒輪齒面上的軸向力A和徑向力R分別為:
(5.4)
(5.5)
= (5.6)
= (5.7)
由上面已知可得:
11693.6N
=2540.57N
由式(5.6)、(5.7)可算得:
=2540.57N; =11693.6N
二級減速齒輪齒寬中點處的圓周力為
= N (5.8)
式中:——作用在主減速器主動錐齒輪上的當量轉矩=1825.88;
——該齒輪的齒面寬中點處的分度圓直徑。
可算出2173.66。
二級減速機構作用在二級主、從動齒輪面上的軸向力A和徑向力R分別為:
== (5.9)
== (5.10)
式中:——齒輪的螺旋角,;
把已知條件代入式(5.9)和式(5.10)可算出==6232.88,==8230.32。
5.2軸和軸承的設計計算
一級主動錐齒輪軸的設計計算:對于軸是用懸臂式支撐的,(如圖5.1所示),齒輪以其齒輪大端一側的軸頸懸臂式地支承于一對軸承上。為了增加支承剛度,應使兩軸承的支承中心距比齒輪齒面寬中點的懸臂長度大兩倍以上,同時尺寸應比齒輪節(jié)圓直徑的70%還大,并使齒輪軸徑大于或小于懸臂長。為了減小懸臂長度和增大支承間距,應使兩軸承圓錐滾子的小端相向朝內,而大端朝外,以使拉長、縮短,從而增強支承剛度。由于圓錐滾子軸承在潤滑時,潤滑油只能從圓錐滾子軸承的小端通過離心力流向大端,所以在殼體上應該有通入兩軸承間的右路管道和返回殼體的回油道。
圖5.1一級主動齒輪的支持型式
另外,為了拆裝方便,應使主動錐齒輪后軸承(緊靠齒輪大端的軸承)
收藏