北師大版初中數(shù)學(xué)第四章 小結(jié)與復(fù)習(xí) (2)課件

上傳人:青**** 文檔編號(hào):20674411 上傳時(shí)間:2021-04-12 格式:PPT 頁數(shù):23 大小:868.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
北師大版初中數(shù)學(xué)第四章 小結(jié)與復(fù)習(xí) (2)課件_第1頁
第1頁 / 共23頁
北師大版初中數(shù)學(xué)第四章 小結(jié)與復(fù)習(xí) (2)課件_第2頁
第2頁 / 共23頁
北師大版初中數(shù)學(xué)第四章 小結(jié)與復(fù)習(xí) (2)課件_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《北師大版初中數(shù)學(xué)第四章 小結(jié)與復(fù)習(xí) (2)課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《北師大版初中數(shù)學(xué)第四章 小結(jié)與復(fù)習(xí) (2)課件(23頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 小結(jié)與復(fù)習(xí) 優(yōu) 翼 課 件 第四章 三角形 要點(diǎn)梳理 考點(diǎn)講練 課堂小結(jié) 課后作業(yè) 七年級(jí)數(shù)學(xué)下( BS) 教學(xué)課件 要點(diǎn)梳理 一 .三角形的有關(guān)性質(zhì) 1.不在同一直線上的三條線段首尾 _所組 成的圖形叫作 三角形 . 以點(diǎn) A, B, C為定點(diǎn)的三 角形記為 _,讀作 “三角形 ABC”. 順次相接 ABC 2.三角形三個(gè)內(nèi)角的和等于 _. 180 銳角三角形 直角三角形 鈍角三角形 按角分 按邊分 不等邊三角形 等腰三角形 5.三角形的三邊關(guān)系 三角形 任意兩邊之和大于第三邊 . 三角形任意兩邊之差小于第三邊 . 3. 三角形的分類 4.直角三角形的兩個(gè)銳角 互余 . 6.三角形的 三條

2、角平分線交于一點(diǎn) ; 三角形三條中線交于一點(diǎn); 三角形的三條高所在的直線交于一點(diǎn) . 二 .全等三角形 1.全等三角形的性質(zhì): 對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等 3.三角形的穩(wěn)定性 的依據(jù): SSS 2.全等三角形的判定 ASA SSS SAS AAS 考點(diǎn)一 三角形的三邊關(guān)系 例 1 已知兩條線段的長(zhǎng)分別是 3cm、 8cm ,要想 拼成一個(gè)三角形,且第三條線段 a的長(zhǎng)為奇數(shù),問 第三條線段應(yīng)取多長(zhǎng)? 解: 由三角形兩邊之和大于第三邊 ,兩邊之差小 于第三邊,得 8 3a8+3, 所以 5 a11.又因?yàn)?第三邊長(zhǎng)為奇數(shù) ,所以第三條邊長(zhǎng)為 7cm或 9cm. 考點(diǎn)講練 【 分析 】 根據(jù)三角形的三邊

3、關(guān)系滿足 8 3a8+3 解答即可 . 1.已知等腰三角形的兩邊長(zhǎng)分別為 10 和 4 , 則三角形 的周長(zhǎng)是 24 【方法歸納】 等腰三角形沒有指明 腰和底 時(shí)要分類討 論,但也別忘了用 三邊關(guān)系 檢驗(yàn)?zāi)芊窠M成三角形這一 重要解題環(huán)節(jié) . 針對(duì)訓(xùn)練 考點(diǎn)二 三角形的內(nèi)角和 例 2 如圖, CD是 ACB的平分線, DE BC, A 50 , B 70 ,求 EDC, BDC的度數(shù) 解:因?yàn)?A 50 , B 70 , 所以 ACB 180 A B 180 50 70 60 . 因?yàn)?CD是 ACB的平分線, 所以 BCD ACB 60 30 . 因?yàn)?DE BC, 所以 EDC BCD 30

4、 , BDC 180 B BCD 80 . 1 2 1 2 2.在 ABC中 ,三個(gè)內(nèi)角 A, B, C滿足 B A= C- B,則 B= . 90 針對(duì)訓(xùn)練 考點(diǎn)三 三角形的角平分線、中線、高 例 3 如圖,在 ABC中, E是 BC上的一點(diǎn), EC 2BE,點(diǎn) D是 AC的中點(diǎn),設(shè) ABC, ADF和 BEF 的面積分別為 S ABC, S ADF和 S BEF,且 S ABC 12, 則 S ADF S BEF _ 解析:因?yàn)辄c(diǎn) D是 AC的中點(diǎn),所以 AD AC, 因?yàn)?S ABC 12, 所以 S ABD S ABC 12 6. 因?yàn)?EC 2BE, S ABC 12, 所以 S A

5、BE S ABC 12 4. 因?yàn)?S ABD S ABE (S ADF S ABF) (S ABF S BEF) S ADF S BEF, 所以 S ADF S BEF S ABD S ABE 6 4 2. 1 2 1 2 1 2 1 3 1 3 2 三角形的中線將三角形分成面積相等的兩部分; 高相等時(shí),面積的比等于底邊的比;底相等時(shí),面積 的比等于高的比 方法歸納 3.如圖,在 ABC中, CE, BF是兩條高, 若 A=70 , BCE=30 ,則 EBF的度數(shù) 是 , FBC的度數(shù)是 . 4.如圖,在 ABC中,兩條角平分線 BD和 CE相交于點(diǎn) O,若 BOC=132 , 那么 A的

6、度數(shù)是 . A B C E F A B C D E O 20 40 84 針對(duì)訓(xùn)練 例 4 已知, ABC DCB, ACB DBC, 試說明 : ABC DCB ABC DCB(已知), BC CB(公共邊), ACB DBC(已知), 解: 在 ABC和 DCB中 , ABC DCB( ASA ) . B C A D 【 分析 】 運(yùn)用“兩角和它們的夾邊對(duì)應(yīng)相等兩個(gè)三角 形全等”進(jìn)行判定 考點(diǎn)四 全等三角形的判定與性質(zhì) 例 5 如圖,在 ABC中, AD平分 BAC,CE AD于 點(diǎn) G,交 AB于點(diǎn) E,EF BC交 AC于點(diǎn) F, 試說明: DEC= FEC. A B C D F E

7、G 【 分析 】 欲證 DEC= FEC 由平行線的性質(zhì)轉(zhuǎn)化為證明 DEC= DCE 只需要證明 DEG DCG. A B C D F E G 解: CE AD, AGE= AGC=90 . 在 AGE和 AGC中, AGE= AGC, AG=AG, EAG= CAG, AGE AGC(ASA), GE =GC. 在 DGE和 DGC中, EG=CG, EGD= CGD=90 , DG=DG. DGE DGC(SAS). DEG= DCG. EF/BC, FEC= ECD, DEG = FEC. 利用全等三角形證明角相等,首先要找到兩個(gè)角 所在的兩個(gè)三角形,看它們?nèi)鹊臈l件夠不夠;有時(shí) 會(huì)用到

8、等角轉(zhuǎn)換,等角轉(zhuǎn)換的途徑很多,如:余角, 補(bǔ)角的性質(zhì)、平行線的性質(zhì)等,必要時(shí)要想到添加輔 助線 . 方法總結(jié) 5.已知 ABC和 DEF,下列條件中 ,不能保證 ABC 和 DEF全等的是 ( ) A.AB=DE,AC=DF,BC=EF B. A= D, B= E,AC=DF C.AB=DE,AC=DF, A= D D.AB=DE,BC=EF, C= F D 針對(duì)訓(xùn)練 考點(diǎn)五 本章中的思想方法 方程思想 例 6 如圖, ABC中, BD平分 ABC, 1= 2, 3= C,求 1的度數(shù) . A B C D ) 2 4 1 3 解:設(shè) 1=x,根據(jù)題意可得 2=x. 因?yàn)?3= 1+ 2, 4=

9、 2, 所以 3=2x, 4=x, 又因?yàn)?3= C,所以 C=2x. 在 ABC中, x+2x+2x=180 , 解得 x=36 , 所以 1=36 . 在角的求值問題中,常常利用內(nèi)角、外角之間 的關(guān)系進(jìn)行轉(zhuǎn)化,然后通過三角形內(nèi)角和定理列方 程求解 . 方法總結(jié) 分類討論思想 例 7 已知等腰三角形的兩邊長(zhǎng)分別為 10 和 6 ,則三 角形的周長(zhǎng)是 解析:由于沒有指明等腰三角形的腰和底, 所以要分兩種情況討論: 第一種 10為腰,則 6為底,此時(shí)周長(zhǎng)為 26; 第二 種 10為底,則 6為腰,此時(shí)周長(zhǎng)為 22. 26或 22 化歸思想 A B C D O 如圖, AOC與 BOD是有一組對(duì)頂角的三角形, 其形狀像數(shù)字“ 8”,我們不難發(fā)現(xiàn)有一重要結(jié)論 : A+ C= B+ D.這一圖形也是常見的基本圖形 模型,我們稱它為“ 8字型 ”圖 . 性質(zhì) 判定 : SAS、 ASA、 AAS、 SSS 三 角 形 高、角平分線、中線 性質(zhì) 等腰(等邊)三角形的性質(zhì)與判定 全等三角形 用尺規(guī)作三角形 任意兩邊之和大于第三邊, 任意兩邊差小于第三邊 內(nèi)角和為 180 課堂小結(jié) 課后作業(yè) 見章末練習(xí)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!