《一維六方準(zhǔn)晶中界面裂紋與位錯(cuò)的交互作用》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《一維六方準(zhǔn)晶中界面裂紋與位錯(cuò)的交互作用(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、一維六方準(zhǔn)晶中界面裂紋與位錯(cuò)的交互作用
摘 要:應(yīng)用復(fù)變函數(shù)的方法,研究了一維六方準(zhǔn)晶雙材料中單個(gè)圓弧形夾雜界面裂紋與基體中螺型位錯(cuò)之間的交互作用問(wèn)題,求得了該問(wèn)題的封閉形式解.當(dāng)界面裂紋消失時(shí),所得的退化結(jié)果與已有文獻(xiàn)一致.導(dǎo)出了位錯(cuò)在圓外無(wú)限大區(qū)域中的任意位置時(shí),界面裂紋尖端應(yīng)力強(qiáng)度因子的表達(dá)式.數(shù)值結(jié)果表明,隨著位錯(cuò)距離界面裂紋的位置越來(lái)越遠(yuǎn),裂紋尖端應(yīng)力強(qiáng)度因子的值越來(lái)越??;隨著界面裂紋開(kāi)口角度的增大,裂紋尖端應(yīng)力強(qiáng)度因子的值先增大后減小.
583一維六方準(zhǔn)晶中界面裂紋與位錯(cuò)的交互作用_[]
關(guān)鍵詞:準(zhǔn)晶;界面裂紋;螺型位錯(cuò);應(yīng)力
2、強(qiáng)度因子;復(fù)變函數(shù)方法
中圖分類(lèi)號(hào):O346.1 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract:The interaction effects between a single circular interfacial crack and screw dislocation located inside the matrix were investigated for 1D hexagonal quasicrystal. Through applying the complex potential method, the closed form solutions of this proble
3、m were obtained. The degradation results are consistent with the conclusions in previous literature. The stress intensity factor at the crack tip was also derived. The results show that the stress intensity factor decreases with the increase of the distance between the dislocation and interfacial cr
4、ack. With the increase of the opening angle of the circular interfacial crack, the stress intensity factor increases firstly and then decreases.
Key words:quasicrystals; interfacial cracks; screw dislocations; stress intensity factor; complex variable method
1984年,Shechtman等人?l現(xiàn)準(zhǔn)晶.一直以來(lái),準(zhǔn)晶以其獨(dú)特的
5、物理力學(xué)性能和未來(lái)良好的應(yīng)用前景,使其無(wú)論是在理論研究還是在實(shí)驗(yàn)觀(guān)察方面,都吸引著廣大研究者的關(guān)注[1-5].然而,準(zhǔn)晶復(fù)合材料中的缺陷問(wèn)題,如位錯(cuò)、裂紋、夾雜等會(huì)極大地影響到材料的力學(xué)性能.
近些年來(lái),越來(lái)越多的科研人員開(kāi)始研究準(zhǔn)晶中的缺陷問(wèn)題.Fan等[6]應(yīng)用復(fù)變函數(shù)的方法研究了一維六方準(zhǔn)晶中運(yùn)動(dòng)的Griffith裂紋問(wèn)題;Wang 等[7]研究了十次準(zhǔn)晶中半無(wú)限裂紋與刃型位錯(cuò)的干涉效應(yīng)問(wèn)題,并求得了裂紋尖端的應(yīng)力強(qiáng)度因子和應(yīng)變能釋放率的表達(dá)式;Hu等[8]研究了一維六方準(zhǔn)晶中螺型位錯(cuò)與圓形夾雜的彈性干涉問(wèn)題,并揭示了位錯(cuò)力與相位子場(chǎng)彈性常數(shù)和聲子場(chǎng)相位子場(chǎng)耦合彈性常數(shù)之間的變化規(guī)
6、律.這些研究大多是針對(duì)單一缺陷問(wèn)題或者單一準(zhǔn)晶材料中的缺陷問(wèn)題,對(duì)于準(zhǔn)晶復(fù)合材料中缺陷之間的干涉效應(yīng)問(wèn)題,報(bào)道的比較少.
本文研究了一維六方準(zhǔn)晶雙材料中單個(gè)圓弧形界面裂紋與基體中螺型位錯(cuò)之間的交互作用問(wèn)題.運(yùn)用復(fù)變函數(shù)的解析延拓技術(shù)與奇性主部分析方法,獲得了該問(wèn)題的封閉形式解.在得到界面裂紋尖端應(yīng)力強(qiáng)度因子的表達(dá)式后,討論了裂紋尖端應(yīng)力強(qiáng)度因子分別與裂紋開(kāi)口角度、位錯(cuò)相對(duì)位置的變化規(guī)律.
1 問(wèn)題的描述與求解
在一維六方準(zhǔn)晶中,當(dāng)缺陷(位錯(cuò)、裂紋)的幾何特征沿準(zhǔn)周期方向(z軸)無(wú)變化時(shí),其彈性問(wèn)題可分解為2個(gè)相互獨(dú)立的問(wèn)題[9].第一個(gè)問(wèn)題是經(jīng)典彈性問(wèn)題,已被充分研究過(guò).因此
7、我們僅討論第二個(gè)反平面聲子場(chǎng)相位子場(chǎng)耦合問(wèn)題,于是有:
4 結(jié) 論
本文研究了一維六方準(zhǔn)晶雙材料中單個(gè)圓弧形夾雜界面裂紋與基體中螺型位錯(cuò)之間的交互作用問(wèn)題.運(yùn)用復(fù)變函數(shù)的解析延拓技術(shù)與奇性主部分析方法,獲得了該問(wèn)題的封閉形式解.當(dāng)界面裂紋消失時(shí),所得的退化結(jié)果與已有文獻(xiàn)一致.
在得到界面裂紋尖端應(yīng)力強(qiáng)度因子的表達(dá)式后,討論了圓形晶體夾雜與準(zhǔn)晶基體的單個(gè)圓弧形界面裂紋的應(yīng)力強(qiáng)度因子分別與裂紋開(kāi)口角度、位錯(cuò)相對(duì)位置的變化規(guī)律.隨著位錯(cuò)距離界面裂紋的位置越來(lái)越遠(yuǎn),裂紋尖端應(yīng)力強(qiáng)度因子的值越來(lái)越小;隨著界面裂紋開(kāi)口角度的增大,裂紋尖端應(yīng)力強(qiáng)度因子的值先增大后減小,即存在一個(gè)特定的裂紋
8、開(kāi)口角度,使得應(yīng)力強(qiáng)度因子的值達(dá)到最大值.
參考文獻(xiàn)
[1] LI X F, DUAN X Y, FAN T Y, et al. Elastic field for a straight dislocation in a decagonal quasicrystal [J]. Journal of Physics Condensed Matter, 1999, 11(3): 703-711.
[2] LI X F, FAN T Y. A straight dislocation in onedimensional hexagonal quasicrystals [J]. Ph
9、ysica Status Solidi (B), 1999, 212(1): 19-26.
[3] RONCHETTI M. Quasicrystals―an introduction overview [M]. Philos Mag, 1987, 56: 237-249. [4] WANG Renhui, YANG Wenge, HU Chengzheng, et al. Point and space groups and elastic behaviours of onedimensional quasicrystals [J]. Journal of Physics Co
10、ndensed Matter, 1997, 9(11): 2411-2422.
[5] LIU Guanting, GUO Ruiping, FAN Tianyou. Plane elasticity and dislocation of one dimensional hexagonal quasicrystal with point group 6 [J]. Journal of Beijing Institute of Technology, 2005, 14(1): 87-91.
[6] FAN Tianyou. The mathematical theory of ela
11、sticity of quasicrystals and applications [M]. Beijing: Beijing Institute of Technology Press, 1999.
[7] WANG X, ZHONG Z. Interaction between a semiinfinite crack and a straight dislocation in a decagonal quasicrystal [J]. International Journal of Engineering Science, 2004, 42: 521-538.
[8] HU
12、 Yaqun, XIA Ping, WEI Kexiang. The interaction between a dislocation and circular inhomogeneity in 1D hexagonal quasicrystals [J]. Applied Mechanics and Materials, 2010, 34: 429-434.
[9] 皮建?|, 劉官?gòu)d, 郭懷民. 一維六方準(zhǔn)晶中圓弧裂紋及拋物線(xiàn)裂紋的反平面剪切問(wèn)題[J]. 內(nèi)蒙古師范大學(xué)學(xué)報(bào):自然科學(xué)漢文版,2008,37(4):435-440.
PI Jiandong,LIU Guantin
13、g,GUO Huaimin.The antiplane problems with an arc or parabolic crack in onedimensional hexagonal quasicrystals [J].Journal of Inner Mongolia Normal University:Natural Science Edition, 2008, 37(4):435-440.(In Chinese)
[10]殷景霞,方棋洪. 復(fù)合材料中的夾雜內(nèi)位錯(cuò)和圓弧界面裂紋的彈性干涉效應(yīng) [J]. 湖南理工學(xué)院學(xué)報(bào):自然科學(xué)版, 2003, 16(4): 37-40.
YIN Jingxia, FANG Qihong. Interaction between a screw dislocation in the circular inclusion and interfacial cracks in composite materials[J]. Journal of Hunan Institute of Science and Technology: Natural Sciences, 2003, 16(4): 37-40.(In Chinese)