《高考數(shù)學(xué)總復(fù)習(xí) 專題一 函數(shù)與導(dǎo)數(shù)課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)總復(fù)習(xí) 專題一 函數(shù)與導(dǎo)數(shù)課件 文(37頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題一,函數(shù)與導(dǎo)數(shù),題型 1,函數(shù)中的方程思想,函數(shù)與方程是高考的重要題型之一,一方面可以利用數(shù)形 結(jié)合考查方程根的分布;另一方面可以與導(dǎo)數(shù)相結(jié)合,考查方 程解的情況,【名師點(diǎn)評(píng)】(1)求 f(x)的值域可以利用導(dǎo)數(shù),也可以利用,基本不等式求解,(2)若對(duì)任意 x10,2,總存在 x20,2,使 f(x1)g(x2)的,本質(zhì)就是函數(shù) f(x)的值域是函數(shù) g(x)值域的子集,【互動(dòng)探究】,解:(1)由題意,得f(x)x22xa. 方程x22xa0的判別式為44a. 當(dāng)a1時(shí),0,則f(x)0恒成立,,題型 2,函數(shù)中的數(shù)形結(jié)合問題,數(shù)形結(jié)合思想通過“以形助數(shù),以數(shù)解形”,使復(fù)雜問題 簡(jiǎn)單化,
2、抽象問題具體化,能夠變抽象思維為形象思維,有助 于把握數(shù)學(xué)問題的本質(zhì)它是數(shù)學(xué)的規(guī)律性與靈活性的有機(jī)結(jié) 合縱觀多年來的高考試題,巧妙運(yùn)用數(shù)形結(jié)合的思想方法解 決一些抽象的數(shù)學(xué)問題,可起到事半功倍的效果,數(shù)形結(jié)合的 重點(diǎn)是研究“以形助數(shù)”,例 2:已知函數(shù) f(x)x33ax1,a0. (1)求 f(x)的單調(diào)區(qū)間;,(2)若 f(x)在 x1 處取得極值,直線 ym 與 yf(x)的圖,象有三個(gè)不同的交點(diǎn),求 m 的取值范圍,(2)因?yàn)?f(x)在 x1 處取得極大值,,所以 f(1)3(1)23a0,即 a1. 所以 f(x)x33x1,f(x)3x23. 由 f(x)0,解得 x11,x21
3、. 由(1)中 f(x)的單調(diào)性知,,f(x)在 x1 處取得極大值 f(1)1, 在 x1 處取得極小值 f(1)3.,圖 1-1,如圖 1-1,若直線 ym 與函數(shù) yf(x)的圖象有三個(gè)不同的,交點(diǎn),則3
4、(1)f(x)x3ax22a2xx(x2a)(xa), 令 f(x)0,得 x12a,x20,x3a.,當(dāng) a0 時(shí),f(x)在 f(x)0 根的左右的符號(hào)如下表:,所以 f(x)的單調(diào)遞增區(qū)間為(2a,0)和(a,),,圖 D8,圖 1-2,(2)請(qǐng)結(jié)合例 2 一起學(xué)習(xí),例 2 中函數(shù)圖象確定,直線ym 在動(dòng)(變化);而本題中直線 y1 確定,函數(shù)圖象在動(dòng)(變化), 數(shù)形結(jié)合中蘊(yùn)含運(yùn)動(dòng)變化的思想,題型 3,函數(shù)中的分類討論,分類討論,就是當(dāng)問題所給的對(duì)象不能進(jìn)行統(tǒng)一研究時(shí), 就需要對(duì)研究對(duì)象按某個(gè)標(biāo)準(zhǔn)分類,然后對(duì)每一類分別研究得 出每一類的結(jié)論,最后綜合各類結(jié)果得到整個(gè)問題的解答實(shí) 質(zhì)上,分
5、類討論是“化整為零,各個(gè)擊破,再積零為整”的數(shù) 學(xué)策略縱觀每年全國(guó)各地的高考試題,幾乎所有的壓軸題都 與分類討論有關(guān),例 3:(2012 年廣東)設(shè) 00,Bx,R|2x23(1a)x6a0,DAB.,(1)求集合 D(用區(qū)間表示);,(2)求函數(shù) f(x)2x33(1a)x26ax 在 D 內(nèi)的極值點(diǎn),所以 0