喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================
英文原文
Electrical Winch Controls
by Tom Young
The form of motor control we all know best is the simple manual station with up and down pushbuttons. While these stations may still be the perfect choice for certain applications, a dizzying array of more sophisticated controls is also available. This article addresses the basic electrical requirements of the motors and user interface issues you will need to address before spcifying, building or buying winch controls.
begin with, the manual control stations should be of the hold-to-run type, so that if you take your finger off of the button the winch stops. Additionally, every control station needs an emergency stop (E-stop) that kills all power to the winch, not just the control circuit. Think about it—if the winch isn’t stopping when it should, you really need a failsafe way to kill the line power. It’s also a great idea to have a key operated switch on control stations, especially where access to the stations is not controlled.
Safe operation by authorized personnel must be considered when designing even the simplest manual controls.
Controlling Fixed Speed Motors
The actual controlling device for a fixed speed winch is a three phase reversing starter. The motor is reversed by simply switching the phase sequence from ABC to CBA. This is accomplished by two three-pole contactors, interlocked, so they can’t both be closed at the same time. The NEC requires both overload and short circuit protection. To protect the motor from overheating due to mechanical overloads a thermal overload relay is built into the starter. This has bi-metallic strips that match the heating pattern of the motor and trips contacts when they overheat. Alternatively, a thermistor can be mounted in the motor winding to monitor the motor temperature. Short circuit protection is generally provided by fuses rated for use with motors.
A separate line contactor should be provided ahead of the reversing contactor for redundancy. This contactor is controlled by the safety circuits: E-stop and overtravel limits.
This brings us to limit switches. When you get to the normal end of travel limit the winch stops and you can only move it in the opposite direction (away from the limit). There also needs to be an overtravel limit in case, due to an electrical or mechanical problem, the winch runs past the normal limit. If you hit an overtravel limit the line contactor opens so there is no way to drive off of
the limits. If this occurs, a competent technician needs to fix the problem that resulted in hitting the overtravel limit. Then, you can override the overtravels using the spring return toggle switch inside the starter—as opposed to using jumpers or hand shooting the contactors.
Variable Speed Requirements
Of course, the simple fixed speed starter gets replaced with a variable speed drive. Here’s where things start to get interesting! At the very least you need to add a speed pot to the control station. A joystick is a better operator interface, as it gives you a more intuitive control of the moving piece.
Unfortunately, you can’t just order any old variable speed drive from your local supplier and expect it to raise and lower equipment safely and reliably over kids on stage. Most variable speed drives won’t, as they aren’t designed for lifting. The drive needs to be set up so that torque is developed at the motor before the brake is released, and (when stopping) the brake is set before torque is taken away.
For many years DC motors and drives provided a popular solution as they allowed for good torque at all speeds. The large DC motors required for most winches are expensive, costing many times what a comparable AC motor costs. However, the early AC drives were not very useful, as they had a very limited speed range and produced low torque at low speeds. More recently, as the AC drives improved, the low cost and plentiful availability of AC motors resulted in a transition to AC drives.
There are two families of variable speed AC drives. Variable frequency inverters are well known and readily available. These drives convert AC to DC, then convert it
back to AC with a different frequency. If the drive produces 30 Hz, a normal 60 Hz motor will run at half speed. In theory this is great, but in reality there are a couple of problems. First, a typical 60 Hz motor gets confused at a line frequency below 2 or 3 Hz, and starts to cog (jerk and sputter), or just stops. This limits you to a speed range of as low as 20:1—hardly suitable for subtle effects on stage! Second, many lower cost inverters are also incapable of providing full torque at low speeds. Employing such drives can result in jerky moves, or a complete failure to lift the piece—exactly what you don’t want to see when you are trying to start smoothly lifting a scenic element. Some of the newer inverters are closed loop (obtain feedback from the motor to provide more accurate speed control) and will work quite well.
The other family of AC drives is flux vector drives. These units require an encoder mounted on the motor shaft allowing the drive to precisely monitor the rotation of the armature. A processor determines the exact vector of magnetic flux (thus flux vector drive) required to rotate the armature the next few degrees at a given speed. These drives allow an infinite speed range, as you can actually produce full torque at zero speed. The precise speed and position control offered by these drives make them a favorite in high performance applications.
PLC-based controls provide system status as well as control options. This screen give the operator full access to Carnegie Hall’s nine stage floor lifts.
PLC Based Systems
A PLC is a programmable logic controller. First developed to replace the relay based industrial control systems of the ’50s and ’60s, these controls are at home in rugged, industrial environments. These are modular systems with a great variety of I/O modules allowing semi-custom hardware configurations to be assembled easily at a reasonable price. These include position control modules, counters, A/D and D/A converters and all sorts of solid state or hard contact closure outputs. The great variety of I/O components and the modular nature of the PLC make this an effective way to build custom and semi-custom control systems.
The greatest drawback to PLC systems is the lack of really great displays to tell you what they are doing or to help you program them. Monochrome and medium resolution color displays are the norm, as the primary use for these components in on a factory floor.
One of the first major PLC systems used in a large entertainment venue is the complex lift and wagon system at the original MGM Grand (now Bally’s) in Las Vegas. Several manufacturers offer standard PLC-based systems and a host of semi-custom acoustic banner, shell, and lift control systems is also available. The ability to build custom systems from standard building blocks is the greatest strength of PLC-based controls.
High End Controllers
The most sophisticated rigging controllers go well beyond speed, time, and position control. They include the ability to write complex cues, record profiled moves, and manage multiple cues running at once.
Many of the larger opera houses are moving toward point hoist systems, where there is a separate winch for each lift line (the rigging equivalent of dimmer per cir cuit). When multiple winches are used to carry a single piece, the winches must be perfectly synchronized, or the load can shift so that an individual winch can become dangerously overloaded. The control system must be able to keep selected winches in synch or provide a rapid, coordinated stop if a winch is unable to stay in synch with the others. With a typical top speed of of each other 240 fpm and a requirement to keep the winches within a 1/8″, you have less than three milliseconds to recognize a problem, attempt to correct the errant winch’s speed, determine that you’ve failed and initiate a coordinated stop of all the winches in the group. This takes a lot of computing, fast I/O, and well-written software.
There are two very different approaches to large rigging control systems. Originally, a single console was used, with the usual problem of where it should be located for the operator’s optimum view. Unfortunately this can change not only from show to show, but also from one cue to the next. This dilemma has been partially addressed by using video cameras at different locations in conjunction with 3D screen graphics that allow the operator to view the expected rigging motion three dimensionally from any viewpoint. This allows the operator to view the on screen movement of the rigging from a viewpoint that matches his actual view of the stage, or the actual view of a closed circuit camera. For complex moves with inter-related pieces this makes the control and understanding of what is happening much simpler.
The other approach is a distributed system, with several portable consoles. This allows different operators to control different aspects of the rigging, in the same manner we have done with manual sets. A dramatic example of this approach is used by the Royal Opera at Covent Garden, where there are ten consoles controlling a total of 240 motors. Each console has five playbacks, and is set up so that each motor is assigned to a single console. One operator and console could control everything, but frequently one console may be running stage lifts, another the onstage rigging, and a third is being used backstage to move stored drops.
Cutting-edge portable consoles allow multiple operators to control the action from the best vantage points and provide 3D displays.
Reprinted from PROTOCOL, the Journal of the Entertainment Services and Technology Association (www.esta.org) Fall 2003 issue. ?2003 ESTA.
Conclusion
The tremendous variety of rigging control systems currently available ranges from the pushbutton station to complex multi-user computerized control system. When shopping for rigging control systems you generally get what you pay for. The most important features are safety and reliability. These are features with real value, and you should expect to pay a fair price for this security. Work with an established manufacturer who can show you working installations and who will put you in contact with users who have requirements similar to yours.
中文譯文
電力絞車的控制
對于電動機的控制,我們所知道的最好的方式就是使用由許多點動式按鈕組成的簡單的手工操作臺。而這種操作臺在某些應用方面可能仍然是個不錯的選擇,如一些令人頭痛的復雜的控制也可以用。這篇文章講述了,在你設計、組建或是購買絞車控制器之前,你必須對電動機的基本電氣設備和你將需要尋址的用戶接口命令進行編址。
首先,手動控制臺應該是手動控制型的,因此,如果你把你的手指移開按鈕,絞車就會停車。另外,每個控制工作站都需要配備緊急制動閘,緊急制動閘可以切斷絞車的所有電源,而不僅僅是控制電路的。仔細想想看,如果絞車在該停車時,它卻沒有停下來,你就確實需要一種故障保障的方法去切斷線路的電源。在控制工作臺上設置一個關鍵操作開關,也是一個非常好的主意,特別是在通向工作站的線路不能控制時,就可以用那個開關來控制。
(在設計控制臺時,即使是最簡單的手工控制臺,也要考慮設置由專門人員操作的安全操作按鍵。)
控制定速電動機
對于一臺定速絞車的實際控制設備是一臺三相起動器。電動機的轉向被反向,是通過簡單的開關控制相序從A-B-C變換到C-B-A。這些動作被完成,是通過兩個三磁極式電流接觸器,而且它們是互鎖的,所以,它們不可能被同時關閉。NEC公司要求同時擁有過載和短路保護裝置。為了保護電動機免受由于機械過載引起的過熱的影響,在起動器內要安裝熱量過載延遲裝置。當熱量過載延遲裝置過熱時,它所擁有的雙金屬長條斷開電動機的電源。除此外,還可以選擇一臺電熱調節(jié)器可以用纏繞的方式安裝在電動機上,它可以用于監(jiān)控電動機的溫度變化。對于短路保護,我們一般是通過電動機常用的熔斷器來實現(xiàn)的。
一臺獨立的線性電流接觸器,被配置的電流接觸器應該超過主回路的電流接觸器,從而達到冗余的目的。這臺電流接觸器是由安全電路來控制的,如:緊急制動和越程極限。
我們可以使用限位開關來實現(xiàn)上述的操作。當你到達正常的行程極限位置末端時,絞車就會停車,并且你只能夠向相反的方向移動絞車(即遠離極限位置的方向)。這里也需要一個越程限制以防萬一,由于電氣的或者機械的問題,而使絞車的運行超過正常的極限位。如果你碰到越程限制器,線形電流接觸器就會打開,因此,絞車將無法被驅動超過這個極限位置。如果上述情況發(fā)生,就需要請專業(yè)的技術人員來檢查導致碰到越程限制器的具體原因。然后,你就能夠用起動器內部的彈力恢復撥動開關來處理越程的問題,而不是使用跳閘器或是手工切斷電流接觸器。
變速的必要條件
當然,簡單的定速起動器被變速驅動器所取代。這就使事情開始變得有趣起來了!至少,你需要在控制操作臺上增加一個速度表盤。操縱桿是一個較好的操作接口,由于它使你對部件的移動有一個更直觀的控制。
不幸的是,你不能僅僅從你的本地控制臺去發(fā)命令控制老式的變速驅動器,此外,你不能希望它在初始階段,就能安全而可靠的提升與下放設備。大多數(shù)的變速驅動器不能實現(xiàn)上述的要求,因為它們并不是設計用來做提升工作的。驅動器需要設置成在制動器松開之前,就能夠在電動機上產生扭矩,并且,當停車時,即在扭矩撤銷之前,制動器將先動作。
許多年來,直流電動機和驅動器提供了一些普遍的解決方案,如它們在各種速度時都具有良好的力矩特性。對于大多數(shù)的絞車所需求的大型直流電動機是很貴的,那要比同類型的交流電動機貴得多。雖然,早期的交流驅動器不是非常有用,如它們有一個非常有限速度適用范圍,而且僅產生低速小扭矩。如今,隨著直流驅動器的發(fā)展,低成本而且大量可用的交流電動機的出現(xiàn),導致了一場交流驅動的革命。
變速交流驅動器有兩個系列。變頻轉換器已經(jīng)家喻戶曉,而且的確很容易使用。這些驅動器將交流轉換成直流,然后,再把它轉換回交流,轉換后的交流已經(jīng)是不同頻率的。如果驅動器產生30Hz的交流,一臺正常的60Hz的電動機將以一半的速度運行。從理論上說,這非常好,但是,在實際中,這將會有很多的問題。首先,一臺典型的60Hz的電動機在線性頻率低于2Hz或是3Hz的區(qū)域會出現(xiàn)誤差,并且,開始嵌齒(即急推,猛拉),或是停車。這將限制你的速度范圍低于20:1,幾乎不適應于運行階段的細微調節(jié)。其次,許多低成本的轉換器也不能夠在低速時提供額定扭矩。使用這些驅動器,將導致急速移動,或是對于提升部件完全的失效,準確地說,當你試圖去平穩(wěn)的提升一臺科學儀器時,你不愿看到這樣的情況。一些新型的變極器是閉環(huán)系統(tǒng)(從電動機獲得反饋,提供更加準確的速度控制),并且使電動機將會工作的相當好。
交流驅動器的另一個系列是流量矢量型驅動器。這些元器件要求在電動機的主軸上安裝編碼器,使用這些編碼器會使驅動器可以準確地監(jiān)控電機電樞的旋轉。處理器測定了準確的磁性流量的矢量值,這些值要求使電樞在給定的速度下旋轉。這些驅動器允許有無窮大的速度,因此,你實際能夠在零速度時就產生額定扭矩。這些驅動器所提供的準確的速度和位置的控制,使這些驅動器在高性能應用方面受到歡迎。
(基于PLC的控制器提供有系統(tǒng)狀態(tài)和控制選項。這個屏幕展示給操作者全面的訪問卡內基霍爾德的九層電梯提升的控制面板。)
基于PLC的系統(tǒng)
一臺PLC的全稱是可編程序邏輯控制器。首先,PLC的控制器發(fā)展到取代了基于五六十年代的工業(yè)控制系統(tǒng)的繼電器,它們工作在室內的惡劣的工業(yè)環(huán)境中。這些是模塊化的系統(tǒng),它們具有大量的各種各樣的I/O模塊。這些模塊化的系統(tǒng)可以很容易的實現(xiàn)把半自定義的硬件配置組裝起來,而這樣得到的配置的價錢也很合理。這些模塊包括:位置控制模塊,計數(shù)器,A/D和D/A轉換器,以及各種實體狀態(tài)或是物理接觸閉式輸出模塊。大量不同類型的I/O元器件和PLC的模塊屬性使得它成為一條有效的途徑去組裝自定義和半自定義的控制系統(tǒng)。
對于PLC系統(tǒng)的最大的不足就是缺少真實的大量的顯示功能,從而告訴你PLC正在做什么和幫助你對PLC進行編程。
第一臺被用于大型娛樂場所的專業(yè)的PLC系統(tǒng)之一,是在拉斯維加斯的原米高梅電影制片公司(現(xiàn)在的貝利公司)的搭車和四輪馬車系統(tǒng)上。許多的制造商提供了標準的基于PLC的系統(tǒng)和半自動化聲學的標志的主機,設定命令行解釋器的位置,以及提升控制系統(tǒng)也是可用的。使用標準的模塊去組構用戶自定義系統(tǒng)的能力是基于PLC的控制器的最大的優(yōu)勢。
高端控制器
對于復雜的傳動裝置,控制器開始變得復雜,超過了速度,時間以及位置控制。它們包括寫出復雜的指令,記錄輪廓線的移動,以及處理可以立即運行的多點指令的能力。
許多大型的歌劇院正向著點提升系統(tǒng)的方向發(fā)展,在那里為每一條提升繩索配置有一臺獨立的絞車,那些繩索等同于每條電路的調光器。當多臺絞車被用來提升單個的部分時,這些絞車必須完全的同步,或是載荷能夠轉移,如此會導致一臺單獨的絞車變得有過載的危險??刂葡到y(tǒng)必須能夠使被選的絞車保持同步,或是在一臺絞車不能夠保持與其他絞車同步時,能提供高速的同等的停車能力。對于一臺典型的高速達240英尺/分鐘和一臺要保持絞車的彼此間的速度誤差在1/8分之內的設備,你只有少于三微秒的時間去確認問題,并嘗試糾正錯誤的絞車速度,在確定你失敗后,你起動組中所有絞車的停車。這將需要大量計算,快速I/O接口,以及好用的寫入軟件。
對于大型的繩索控制系統(tǒng)有兩種非常不同的解決方法。首先是,使用單獨的控制臺,對于一般的問題而言,這樣的控制臺應該安裝在適合于操作者視角的位置。然而,這不僅不能夠從一個角度到另一個角度觀察,而且還不可以從一條指令到另一條指令的控制。這些困難已經(jīng)被部分解決。通過使用安裝在不同位置的視頻攝像機,而且這些攝象機連接于三維屏幕圖形,這些圖形使得操作者可以從任意的視角去觀察在三個坐標方向上的預期的繩索運動。這些可以使得操作者,從一個適合他在實際的操作臺處的視角,或是實際的閉環(huán)電路照相機的視角,來觀察在屏幕上的繩索的運動。對于有內部關聯(lián)的部件的復雜的移動,上述的觀察使得實現(xiàn)控制和查出故障原因變得更加簡單。
另一個解決的方案就是分布式系統(tǒng),這個系統(tǒng)使用了多個輕便的控制臺。這將允許不同的操作者以同樣的方式控制傳動裝置的不同方面,我們已經(jīng)改進了手動控制裝置。一個生動的例子,就是在倫敦中部一個蔬菜花卉市場的皇家歌劇院使用了上述的方案,在那里用十個控制臺控制著240臺電動機。每個控制臺有五個錄音重放裝置,并且已經(jīng)被開啟,以便于每臺電動機被指派給一個單獨的控制臺。一位操作者和一個控制臺就能夠控制所有的裝置,但是,常常是一個控制臺可能是運行臺幕的提升,另一個控制臺是控制臺上的傳動裝置,以及第三個控制臺被用來在后臺將必要的背景畫面放下。
(刃口式輕便的控制臺允許多位操作者從最優(yōu)點出發(fā)來控制機器的運動,并且提供三維圖象的顯示。)
結論
有巨大變化的繩索控制系統(tǒng),已經(jīng)從按鈕式的工作站發(fā)展到復雜的多用戶的計算機化的控制系統(tǒng)。當要購買繩索控制系統(tǒng)時,你總是可以找到滿足你需要的??刂葡到y(tǒng)最重要的性能是安全性和可靠性。這些是有真實價值的性能,而且你會期望能以一個合適的價格買到這樣的安全性。與某個確定的產品制造商共事,他會使你知道如何進行安裝。而且,他將會讓你和用戶接觸,那些用戶有著與類似的要求。
7
中國礦業(yè)大學2008屆本科生畢業(yè)設計 第89頁
目 錄
1 緒論……………………………………………………………………………1
1.1 引言………………………………………………………………………1
1.2 概述 ……………………………………………………………………1
1.3 國內外絞車的發(fā)展………………………………………………………3
1.4 JHB-8型回柱絞車的技術特點…………………………………………3
2 總體設計 …………………………………………………………………4
2.1 設計總則…………………………………………………………………4
2.2 設計條件…………………………………………………………………4
2.3 傳動方案的設計…………………………………………………………5
2.4 電動機的設計選擇………………………………………………………5
2.4.1 電動機輸出功率的計算………………………………………………5
2.4.2 確定電動機的型號……………………………………………………6
2.4.3 牽引鋼絲繩直徑的確定及滾筒直徑的確定…………………………7
2.5 滾筒的設計計算…………………………………………………………7
2.5.1 滾筒直徑……………………………………………………………7
2.5.2 滾筒寬度……………………………………………………………7
2.5.3 滾筒的外徑…………………………………………………………8
2.5.4 驗算滾筒的平均速度…………………………………………………8
2.5.5 驗算電機悶車時,鋼絲繩在里層的安全系數(shù)………………………9
3 減速器的設計計算…………………………………………………………10
3.1 減速器參數(shù)確定………………………………………………………10
3.2 圓弧蝸桿蝸輪的設計計算……………………………………………11
3.2.1 材料的選定…………………………………………………………12
3.2.2 初選參數(shù)……………………………………………………………12
3.2.3 蝸輪蝸桿參數(shù)計算及校核…………………………………………13
3.3 內齒輪嚙合及過橋傳動設計…………………………………………17
3.3.1 傳動材料以及數(shù)據(jù)參數(shù)……………………………………………17
3.3.2 強度校核……………………………………………………………18
3.4 過橋齒輪與滾筒齒輪嚙合設計:………………………………………23
3.4.1 傳動材料以及數(shù)據(jù)參數(shù)……………………………………… …23
3.4.2 強度校核……………………………………………………………24
3.5 減速器傳動軸的設計校核……………………………………………29
3.5.1 第1軸的設計計算……………………………………………………29
3.5.2第2軸的設計計算……………………………………………………36
3.5.3 第3軸的計算…………………………………………………………38
4 滾筒軸的設計計算…………………………………………………………39
4.1 滾筒和齒輪上的作用力………………………………………………39
4.2 確定軸的結構方案……………………………………………………40
4.3 軸的強度校核…………………………………………………………41
4.3.1繪制軸的彎矩圖和扭矩圖……………………………………………41
5 系統(tǒng)傳動部件的校核………………………………………………………47
5.1 聯(lián)軸器上鍵的校核……………………………………………………47
5.2 蝸輪上鍵的校核………………………………………………………47
5.3 內齒輪上鍵的校核……………………………………………………48
5.4 軸軸承的校核…………………………………………………………48
5.5 滾筒軸承的校核………………………………………………………51
5.6 制動器的校核…………………………………………………………51
5.7 滾筒聯(lián)結螺栓的校核…………………………………………………52
6 JHB-8型回柱絞車使用說明書………………………………………………54
6.1 使用范圍………………………………………………………………54
6.2 主要技術規(guī)范…………………………………………………………54
6.3 結構特征………………………………………………………………54
6.4 絞車的潤滑與密封……………………………………………………55
6.5 電氣操縱系統(tǒng)…………………………………………………………55
6.6 絞車的裝配、調整、及試運轉…………………………………………55
6.6.1 卷筒裝置……………………………………………………………56
6.6.2 空負荷試運轉………………………………………………………56
6.6.3 負荷試運轉…………………………………………………………56
6.7 安裝、固定、操作和后移………………………………………………57
6.8 絞車的操作規(guī)程………………………………………………………59
6.8.1 工作前的注意事項…………………………………………………60
6.8.2 工作時應遵守下列規(guī)定……………………………………………60
6.8.3 工作后應注意的事項………………………………………………61
6.9 絞車的維護、拆卸與修理………………………………………………61
6.10《煤礦安全規(guī)程》對礦井提升機和絞車規(guī)定…………………………62
6.11絞車的運輸和貯存……………………………………………………67
小結 ……………………………………………………………………………68
參考文獻 ………………………………………………………………………69
附錄 ……………………………………………………………………………70
翻譯部分
英文原文…………………………………………………………………74
中文譯文…………………………………………………………………83
致謝……………………………………………………………………………90
摘 要
JHB—8型回柱絞車是一種有效的礦山輔助運搬設備。該型絞車主要應用于回柱放頂之用,同時也可用于上山、下山、平巷等綜采工作面設備的搬遷,比如液壓支架、溜槽等。此外,拉緊皮帶機機頭、運料、調度車輛等工作都可以用這種絞車來完成。在港口、碼頭、建筑工地、工廠企業(yè),這種絞車也可以發(fā)揮作用。
JHB—8型回柱絞車的傳動系統(tǒng)采用兩級傳動,包括蝸輪蝸桿齒輪傳動、圓柱齒輪傳動,在設計過程中采用承載能力大的圓弧蝸輪蝸桿;而且采用了開式齒輪傳動,大大簡化了機械部分的傳動系統(tǒng),便于安裝和拆卸,結構布置緊湊、合理。
在設計過程采用錐面制動端蓋實現(xiàn)了工作狀態(tài)和制動狀態(tài)的互鎖。絞車起動時動載小,鋼絲繩受到的沖擊小。只需輕輕點動電機控制按鈕,就可起動電機,然后操作制動的手柄,便可實現(xiàn)絞車的動作。
設計中為使回柱絞車具有良好的防爆性能采用了防爆電動機以及防爆磁力啟動器和防爆按鈕開關。該絞車適用條件強、使用壽命長。該絞車結構緊湊,外形尺寸?。唤Y構為近似對稱布置,外形美觀,成長條形,底座呈雪橇狀;絞車重心低,底座剛性好,可安裝地錨,運轉平穩(wěn),安全可靠,安裝方便。
關鍵詞:回柱絞車; 圓弧蝸輪蝸桿; 制動
ABSTRACT
JHB—8 to prop pulling winch is an effective mine auxiliary equipment shipped to move. This type of winch mainly used to top-of-use, but also can be used to uphill, downhill, Pingxiang fully mechanized coal face, such as the relocation of equipment, such as hydraulic support, the chute, and so on. In addition, the belt-tighten the nose, and transport material, scheduling and other work vehicles can be used to complete the winch. At ports, terminals, construction sites, factories and enterprises, the winch can also play a role.
JHB—8 to prop pulling winch—drive system using two transmission, including worm worm gear drive, cylindrical gear transmission, in the process of designing a large carrying capacity of the arc Worm Gear, and adopted the open-gear transmission, greatly simplifies the Mechanical part of the drive system, easy to install and demolition, structural layout compact and reasonable.
In the design process using cone brake cover state and work to achieve a state of interlocking brake. Starting at the winch dynamic small, the impact on the rope. Just gently move the motor control button, we can start the electrical and operation of the brake handle, can be realized winch action.
Design for the prop pulling winch has a good performance by the explosion-proof electrical explosion-proof and explosion-proof magnetic starter button switch. The winch conditions apply strong and long life. The winch compact structure, shape, small size, structure similar to symmetrical layout, aesthetic appearance, growth Strip, a sled-shaped base; winch low center of gravity, rigid base, and can be installed to anchor, a smooth operation, safety and reliability, ease of installation.
Keywords:prop pulling winch; arc Worm Gear; brake
1 緒論
1.1引言
煤炭是當前我國能源的主要組成部分之一,是國民經(jīng)濟保持高速增長的重要物質基礎。但是目前我國的煤炭工業(yè)的發(fā)展遠不能滿足整個國民經(jīng)濟的發(fā)展需要。因此必須以更快的速度發(fā)展煤炭工業(yè)。然而,高速發(fā)展煤炭工業(yè)的出路在于煤炭工業(yè)的機械化。
煤炭工業(yè)的機械化是指采掘、支護、運搬、提升的機械化。其中運搬包括運搬和輔助運搬。絞車就是輔助運搬的其中一種。我國絞車的發(fā)展大致分為三個階段。20世紀50年代主要是仿制設計階段;60年代,自行設計階段;70年代以后,我國進入標準化、系列化設計階段。
1.2概述
回柱絞車又稱慢速絞車,是供煤礦井下采煤工作面回柱放頂之用。由于它的高度較低重量又輕,特別適用于薄煤層和急傾斜煤層采煤工作面,以及各種采煤工作面回收沉入底板或被矸石壓埋的金屬支柱。隨著機械化采煤程度的提高,它越來越多地被廣泛用于機械化采煤工作面,作為安裝、回收牽引各種設備和備件。
JHB-8型回柱絞車是一種有效的礦山輔助設備。該型絞車主要應用于回柱放頂之用,同時也可用于上山、下山、平巷等綜采工作面設備的搬遷,比如液壓支架、溜槽等。此外,拉緊皮帶機機頭、運料、調度車輛等工作都可以用這種絞車來完成。在港口、碼頭、建筑工地、工廠企業(yè),這種回柱絞車也可以發(fā)揮作用??梢?,回柱絞車在煤炭行業(yè)、機械行業(yè),包括部分其他行業(yè)都有著不可忽視的地位。
回柱絞車在回采工作面的布置方式有以下三種:
1)安裝在回風巷內,距回采工作面約。這種布置方式適用條件廣,尤其是煤層傾角較大,頂板破碎,壓力較大的工作面。但這種布置方式會影響回風巷的運料工作。每一次回柱需移動導向輪,鋼絲繩繞過導向輪,多了一個拐彎,摩擦阻力增大,鋼絲繩容易損壞。按這種方式布置的回柱絞車,必須沿鋼絲繩牽引方向長條式布置,絞車寬度不應超過,過寬則會堵塞巷道。因為運料工人常常從機體旁經(jīng)過,齒輪一定要密閉,不然就容易引起事故。
2)安設在回采工作面上端,緊靠回風巷上部和密集支柱之間。這種布置方式當頂板較好,煤層傾角較小的條件下采用。但每進行一個循環(huán)都須移動絞車,且需移開柱子,因而不夠方便。在工作面上方頂板壓力較大時,機座受力容易變形,可能引起齒輪嚙合不良,甚至回柱絞車有被壓埋的危險。
3)安設在工作面上,工作面上有數(shù)臺絞車同時回柱,加快回柱速度。這種布置方式對淺截深的機采工作面尤為需要。例臺徐州礦務局認為,回柱設備是當前提高煤產量的關鍵?,F(xiàn)在安排回柱放頂時間是每天一個班(8小時),而用刨煤機進尺米只要2小時就能完成,因此,只要加快回柱速度,就會收到提高煤產量的效果。
回柱絞車結構的一般分析
1)按驅動機構分
(1)手搖式回柱絞車
手搖式回柱絞車用于人工回柱,體積小,重量輕,移動方便,結構簡單。但人工回柱效率低,安全性差,一般只用作輔助作業(yè),或在回收金屬支柱時使用。
(2)風動回柱絞車
風動回柱絞車拉力大,重量輕,適用于我國西南地區(qū)的超級瓦斯礦,但是風動回柱絞車成本較高,使用范圍受到限制。
(3)電動回柱絞車
電動回柱絞車使用范圍最廣,目前各制造廠生產的多為電動回柱絞車。
2)按滾筒結構分
(1)纏繞式滾筒
纏繞式滾筒具有一定的容繩量,操作簡單,使用范圍廣,但體積和重量都比較大,現(xiàn)在生產的回柱絞車以采用纏繞式滾筒的為最多。
(2)摩擦式滾筒
摩擦式滾筒多制成雙曲線型,靠滾筒上的幾圈鋼絲繩與滾筒的摩擦力帶動鋼絲繩進行工作,滾筒量不受限制,也不存在排繩子問題,解決了“咬繩現(xiàn)象,這種絞車尚在試驗中。
(3)鏈條滾筒
鏈條滾筒即用纏繞鏈條來進行回柱工作。因鏈條較重,不宜太長,如某廠生產的三噸輕便回柱絞車,鏈條僅有6米,因此,使用這種回柱絞車的極少。
3)按傳動機構分
(1)普通蝸桿蝸輪傳動
淮南煤礦機械廠1952年生產的HJ-14型回柱絞車,第一級為普通蝸桿蝸輪傳動,再經(jīng)過二級圓柱齒輪帶動滾筒。采用蝸桿蝸輪傳動機械效率低,雖具有結構結實耐用的優(yōu)點,但體積重量都很大,搬運困難,不適于井下狹窄環(huán)境和經(jīng)常移動的特點,故此類回柱絞車已不再生產。
(2)圓弧面蝸桿傳動
現(xiàn)在生產的各種回柱絞車均采用圓弧面蝸桿傳動,機械效率提高到約為機器體積和重量都相應減少。
1.3 國內外絞車的發(fā)展
近40年我國的煤炭行業(yè)發(fā)生了巨大變化,總裁機械化水平達到國際先進水平,綜采單采原煤產量早已突破了百萬噸,然而煤炭工業(yè)機械化離不開運輸,運輸又離不了輔助運輸設備,絞車就是輔助運輸設備的一種。原煤的運輸也已經(jīng)實現(xiàn)了大運量娦式輸送機化,但井下軌道輔助運輸與之很不適應,材料的運較基本上沿用傳統(tǒng)的小絞車群接?式的運輸,運輸戰(zhàn)線長,環(huán)節(jié)多,占用搬運設備、人員多,安全性差,效率低。盡管一些煤礦對其進行了技術改造, 但仍然滿足不了當前礦井發(fā)展和生產的需要??梢姷V井輔?運輸是當前現(xiàn)代化礦井建設的關鍵和重點。
我國絞車的誕生是從20世紀50年代開始的,初期主要仿制日本和蘇聯(lián)的;60年代進入了自行設計階段;到了70年代,隨著技術的慢慢成熟,絞車的設計也進入了標準化和系列化的發(fā)展階段。但與國外水平相比,我國的絞車在品種、型式、結構、產品性能,三化水平(參數(shù)化、標準化、通用化)和技術經(jīng)濟方面還存在一定的差距。
國外礦用絞車發(fā)展趨勢有以下幾個特點:
1)標準化系列化;
2)體積小、重量輕、結構緊湊;
3)高效節(jié)能;
4)壽命長、低噪音;
5)一機多能、通用化高f、大功率;
6)外形簡單、平滑、美觀、大方。
針對國外的情況我們應譏采取以下措施:
1)制定完善標準,進行產品更新改造和提高產品性能;
2)完善測試手段,重點放在產品性能檢測;
3)技術引進和更新?lián)Q代相結合;
4)組織專業(yè)化生產,爭取在較短時間內達到先進國家的水平。
1.4 JHB-8型回柱絞車的技術特點
1)速度變化不大,回柱效率高
JHB-8型回柱絞車工作時的牽引速度為,平均速度,最大牽引力為,容繩量為,工作效率大大提高。
2)結構簡單,布置合理
JHB-8型回柱絞車的傳動系統(tǒng)采用兩級傳動,包括圓弧蝸輪蝸桿齒輪傳動、圓柱齒輪傳動,而且采用了開式齒輪傳動,大大簡化了機械部分的傳動系統(tǒng),便于安裝和拆卸,結構布置緊湊、合理。
3)操作簡單,安全可靠
JHB-8型回柱絞車采用錐面實現(xiàn)了工作狀態(tài)和制動狀態(tài)的互鎖。絞車起動時動載小,鋼絲繩受到的沖擊小。只需輕輕點動電機控制按鈕,就可起動電機,然后操作制動的手把,便可實現(xiàn)絞車的動作。
2 總 體 設 計
2.1設 計 總 則
1)煤礦生產,安全第一。
2)面向生產,力求實效,以滿足用戶最大實際需求。
3)要考慮到回柱時的各種問題。
4)貫徹執(zhí)行國家、部、專業(yè)的標準及有關規(guī)定。
5)技術比較先進,并要求多用途。
使用環(huán)境和工作條件
(1)環(huán)境溫度為;環(huán)境相對濕度不超過;海拔高度以下。
(2)周圍空氣中的甲烷、煤塵、硫化氫和二氧化碳等不得超過《煤礦安全規(guī)程》中所規(guī)定的安全含量。
2.2 設 計 條 件
最大牽引力:
平均牽引速度:
容繩量:
2.3 傳動方案的設計
—過橋齒輪 —蝸桿 —蝸輪
—內齒輪 —滑移齒輪 —大齒輪
1—蝸桿軸 2—蝸輪軸 3—過橋齒輪軸 4—滾筒軸
圖2.1 JHB-8型回柱絞車傳動系統(tǒng)圖
其傳動路線是:
防爆電機→聯(lián)軸器→蝸桿→蝸輪→內齒輪→外齒輪→過橋齒輪→大齒輪→卷筒。
2.4電動機的設計選擇
2.4.1電動機輸出功率的計算
已知:
最大拉力
平均繩速
即:
則:
根據(jù)以上的傳動方案圖2.1可得:
總傳動效率
其中:
聯(lián)軸器的效率為;
軸承的效率為;
蝸輪蝸桿傳動效率為;
齒輪傳動效率=0.97。
2.4.2確定電動機的型號
電動機所需的額定功率與電動機輸出功率之間有以下的關系:
其中:─用以考慮電動機和工作機的運轉等外部因素引起的附加動載荷而引入的系數(shù),取
同時,絞車井下使用,條件比較惡劣,要求電動機必須具有防爆功能,查《機械零件設計手冊》,得到電動機的型號:
額定功率
實際轉速
重量:
其外形尺寸:
電機中心高度:
電動機軸直徑長度:
2.4.3牽引鋼絲繩直徑的確定及滾筒直徑的確定
回柱絞車主要用于回采工作面中的回柱放頂,亦可用于托運重物和調度車輛等用途。由于其工作環(huán)境惡劣,要求其具有一定的防腐蝕及防銹能力。
鋼絲繩的安全系數(shù)取,則鋼絲繩所能承受的拉力需滿足以下的要求:
拉
其中:拉
則:
查《機械設計手冊》, 表
選擇: 繩
股
繩纖維芯,鋼絲繩表面鍍絡。
其主要參數(shù)如下:
鋼絲繩直徑:
鋼絲直徑:
鋼絲總斷面面積:
參考重力:
鋼絲繩公稱抗拉強度:
鋼絲破斷拉力總和:
2.5滾筒的設計計算
2.5.1滾筒直徑
式中,─鋼絲繩直徑
則
取
2.5.2滾筒寬度
滾筒的寬度直接影響到最終產品的寬度,因此它的寬度必然要有最大值的限制,即不能太寬。滾筒的寬度太窄的話,那么與減速器裝配起來后,就會顯得不協(xié)調。所以滾筒的寬度不能隨便確定,而最好是在畫圖的過程中把它定下來,這樣有利于整體的配合。讓人看起來協(xié)調、美觀、大方。但現(xiàn)在考慮到滾筒的平均速度以及便于下面的各種計算,我們暫定滾筒寬度為。
2.5.3滾筒的外徑
按照常規(guī),同時根據(jù)《煤礦安全規(guī)程》,鋼絲繩的纏繞層數(shù)最好不要超過5層,也就是說,控制在5層以內,但也可以超過層。
滾筒的容繩量,我們?yōu)?,?jù)以上設計可知,每一層纏繞的圈數(shù):
(圈)
每一圈所纏繞的長度:
計算鋼絲繩的纏繞層數(shù)為(層)
則鋼絲繩在卷筒上的最小纏饒直經(jīng):
鋼絲繩在卷筒上的最大纏饒直經(jīng):
鋼絲繩在卷筒上的平均纏饒直經(jīng):
根據(jù)設計要求平均速度為
滾筒的轉速為:
計算出系統(tǒng)總傳動比為:
2.5.4驗算滾筒的平均速度(鋼絲繩平均速度):
1)最小速度
2)最大速度
3)平均速度
2.5.5驗算電機悶車時,鋼絲繩在里層的安全系數(shù)
1)電機在悶車時,鋼絲繩的拉力
2)電機悶車時,鋼絲繩在里層的安全系數(shù)
所以電機悶車時,鋼絲繩也安全。
3 減速器的設計計算
3.1減速器參數(shù)確定
根據(jù)減速器情況并查蝸輪蝸桿傳動設計參數(shù),決定兩級傳動比的分配情況如下:
第一級蝸輪傳動:
第二級齒輪傳動:
電動機輸出功率:
系統(tǒng)總傳動比:
第一級:
第二級:
系統(tǒng)中各個傳動軸的速度:
1軸
2軸 =
3軸 軸轉速:=
齒輪轉速:=
4軸 軸轉速: =
齒輪轉速: =
各軸功率計算:
電機輸出功率為:
1軸 =
2軸
3軸
4軸
計算各軸扭距
1軸
2軸
3軸 軸上扭矩:
齒輪扭矩:
4軸 軸上扭矩:
齒輪扭矩:
3.2圓弧蝸桿蝸輪的設計計算
蝸桿傳動用于于傳遞空間交錯的兩軸間運動和動力,通常兩軸的交角為。蝸桿傳動的特點:
1)傳動比大,在動力傳動中,一般傳動比,在分度機構中,傳動比可達成1000;
2)傳動平穩(wěn),沖擊載荷??;
3)具有自鎖性;
4)相對滑動速度較大,當工作條件不夠好時,會產生嚴重的摩擦磨損,傳動效率低,自鎖性時效率僅為左右;
5)要采用減摩性較好的貴重有色金屬的合金作蝸輪,成本較高。
蝸桿傳動的類型:有圓柱蝸桿傳動、環(huán)面蝸桿傳動、錐蝸桿傳動。
圓柱蝸桿傳動又分為普通圓柱蝸桿傳動和圓弧圓柱蝸桿傳動。
普通圓柱蝸桿傳動分為阿基米德蝸桿(ZA蝸桿)、法向直廓蝸桿(ZN蝸桿)和漸開線蝸桿(ZI蝸桿)。
各蝸桿傳動的特點及應用:
阿基米德蝸桿:端面齒廓為阿基米德螺旋線,軸向齒廓為直線。加工時,車刀切削平面通過蝸桿軸線。一般用于低速、輕載或不重要的傳動。
法向直廓蝸桿:端面齒廓為漸開線。加工時,車刀刀刃平面與基圓相切,可在專用機床上磨削,易保證加工精度。一般用于蝸桿頭數(shù)較多、轉速效高且精度要求較高的傳動。
漸開線蝸桿:端面齒廓為延伸漸開線,法面齒廓為直線??捎蒙拜喣ハ?,常用于多頭、精密的傳動。
圓弧圓柱蝸桿傳動:蝸桿齒廓為內凹弧形,蝸輪齒廓為凸弧形。其綜合曲率半徑較大,承載能力高, 較普通圓柱蝸桿傳動高。廣泛應用于冶金、礦山、化工、建筑、起重等機械設備中。
環(huán)面蝸桿傳動:同時嚙合的齒對數(shù)多,由于齒的接觸線與相對運動方向處處幾乎垂直,齒面間形成動壓油膜條件好,承載能力高于普通圓柱蝸桿傳動約倍.制造和安裝較復雜,對精度要求高。
錐蝸桿傳動:同時嚙合的齒對數(shù)多,重合度大。傳動比大,一般為。承載能力和效率較高。側隙可調整,機構緊湊。制造安裝簡單方便。但傳動具有非對稱性,正反轉受力、承載能力和效率均不相同。
在此,選用圓弧圓柱蝸桿傳動。
3.2.1 材料的選定
蝸桿材料:
35CrMo,整體調質處理,硬度HB240~270,齒面氮化深度,齒面硬度HV516~615(HRC50~56)。
,
蝸輪材料:
ZQSn6-6-3 金屬模型鑄造
3.2.2初選參數(shù)
根據(jù)《機械設計手冊》表16.5-37,16.5-37
查得:
中心距:
傳動比:39
模數(shù):8
蝸桿:
齒廓曲率半徑:
軸向齒形角:
齒頂高:
頂隙c:
軸向齒厚:
導程角
圓弧中心坐標:
齒頂?shù)箞A圓角半徑r:
根據(jù)《機械設計手冊》選取,
蝸輪轉速 18.72
蝸桿轉速 n
3.2.3蝸輪蝸桿參數(shù)計算及校核
1) 蝸桿分度圓直徑:
2) 蝸輪分度圓直徑:
3) 蝸輪變位系數(shù)
4) 頂隙C:
5) 蝸桿齒頂高:
6) 蝸桿齒根高:
7) 蝸桿齒根圓直徑:
8) 蝸桿齒頂圓直徑:
9) 蝸輪齒頂高:
10) 蝸輪齒根高:
11) 蝸輪齒根圓直徑:
12) 蝸輪喉圓直徑:
13) 蝸輪頂圓直徑:
14) 蝸桿軸向齒厚:
=
15) 蝸桿法向齒厚:
16) 蝸輪齒寬:
17) 蝸桿齒寬:
18) 圓弧中心坐標:
蝸輪蝸桿傳動的失效形式與齒輪一樣,也會出現(xiàn)齒面點蝕、膠合、磨損和齒根折斷等。由于蝸輪材料硬度較蝸桿為低,所以失效經(jīng)常發(fā)生在蝸輪輪齒上。
根據(jù)《機械設計手冊》齒輪傳動P243頁3.1.4
軸向圓弧圓柱蝸桿傳動的齒面接觸強度的計算可以近似的采用普通圓柱蝸桿傳動的齒面接觸輕度計算方法(見表16.5-10),由于這種傳動是凹凸面接觸,當量曲率半徑大。接觸線方向有利于潤滑,因此可以視為接觸應力較小。用表16.5-10的公式可將降低,或把增大。
由于這種傳動的蝸輪齒根較厚,一般不產生齒根折斷。因此不必計算齒根彎曲強度。有關其他的選擇可以參考普通圓柱蝸桿傳動。
求蝸輪的圓周速度,并校核效率:
實際傳動比:
蝸輪的圓周速度:
滑動速度:
求傳動效率,按式(16.5-3)
式中
?。?。
所以,
與暫取值0.85接近。
校核蝸輪齒面的接觸強度:
按表16.5-10,齒面接觸強度驗算公式為:
式中:
查表16.5-11得:
查表16.5-12得:(間歇工作);
蝸輪傳遞的實際轉矩:
5337.95
當時。查圖16.5-4得.
將上式帶入。計算出:
所以,強度滿足。
3.3內齒輪嚙合及過橋傳動設計
齒輪傳動是機械傳動中應用最廣泛的一種傳動。目前,齒輪傳動的功率可高達數(shù)萬千瓦,圓周速度可達,直徑可達以上單級傳動比可達8以上,傳動效率達。齒輪傳動承載能力大,效率高,傳動比準確,結構緊湊,工作可靠,使用壽命長。但制造和安裝精度要求高,制造費高,不宜用于中心距較大的場合。
按工作條件,齒輪傳動可做成開式、半開式和閉式齒輪傳動。開式齒輪傳動,齒輪完全外露,易落入灰砂和雜物,不能保證良好的潤滑,故輪齒易磨損,多用于低速級、不重要的場合。半開式齒輪傳動,齒輪浸入油池內,上裝護罩,但不封閉。閉式齒輪傳動,其齒輪和軸承完全封閉在箱體內,能保證良好的潤滑和較好的嚙合精度,為多數(shù)齒輪傳動所采用。
按齒面硬度,齒輪可分為軟齒面和硬齒面齒輪。
3.3.1傳動材料以及數(shù)據(jù)參數(shù)
5)材料及熱處理
小齒輪選用, 滲碳淬火回火HRC56~62;
內齒輪選用, 滲碳淬火回火HRC56~62;
過橋齒輪選用, 滲碳淬火回火HRC56~62。
3.3.2強度校核
1)按接觸疲勞強度校核
(1):
(2):
(3):
(4):
(5)
由表8—119,選取:
(6)
由圖8—32
(7)
由圖8—34表8—120
(8) 圖8—35
,
(9)
由圖8—36查得:
(10)
由表8—122查得:
(11)
由圖8—38d查得:
(12)
(13)
由圖8—39,按允許點蝕查得:
,
(14)
由圖8—40
(15)
由圖8—41 查得:
(16)粗糙度系數(shù)
由圖8—41,齒面粗糙度3.2,,0.95,
(17)
由圖8—43查得:
(18)齒數(shù)比u:
(19)
其中重合度系數(shù)取
(20)
(21)
(22)
由此可知,齒輪的接觸疲勞強度通過。
2)按彎曲疲勞強度校核
(1) 圖8—34 表8—120
(2)
由圖8—44,查
,
(3) 直齒輪
(4)
由圖8—47d查得:
(5)
由表8—124得:
(6)
由圖8—49
(7) 由圖8—50查得:
按
重合度:
=[(-tan)+(-tan)]
=[20(tan(arccos-)+
20(tan(arccos-)]
=1.86
重合度系數(shù)=0.25+0.75/1.86=0.65
(8)
(9)
10)
查表8—121得:
11)
過橋齒輪在傳動系統(tǒng)中只起傳遞轉矩和動力,不改變傳動比。過橋齒輪的的尺寸參數(shù)數(shù)據(jù)和外齒輪的相同。所以其強度校核和外齒輪相差部大,強度也應滿足要求。
因此根據(jù)以上設計計算得出在傳遞過程中。強度足夠。以下給出內齒輪傳動以及過橋齒輪的設計參數(shù)。其中:為內齒輪,為滑移齒輪,為過橋齒輪。
齒輪其他主要尺寸計算
齒輪分度圓直徑:
根圓直徑:
齒根高:
=
頂圓直徑:
齒頂高:
3.4過橋齒輪與滾筒齒輪嚙合設計:
3.4.1傳動材料以及數(shù)據(jù)參數(shù)
5)材料及熱處理
滾筒齒輪選用20,滲碳淬火回火HRC56~62;
過橋齒輪選用20,滲碳淬火回火HRC56~62
3.4.2強度校核
齒輪傳動的失效主要發(fā)生在輪齒部位,其他部位很少失效。輪齒的主要形式有輪齒折斷、齒面點蝕、齒面膠合、齒面磨損和塑性變形。
輪齒折斷指齒輪一個或多個齒在齒根部位整體或局部的斷裂。輪齒因受到短是過載或沖擊栽荷時,引起輪齒突然斷裂,叫過載折斷。輪齒在多次重復的彎曲應力和應力集中作用下的折斷,叫疲勞折斷。
齒面點蝕是指在交變的接觸應力多次反復作用下,在齒面節(jié)線附近,會出現(xiàn)若干小裂紋。封閉在裂紋中的潤滑油,在壓力作用下,產生楔擠作用而使裂紋擴大,最后導致表層小片狀剝落而形成麻點狀凹坑,形成齒面疲勞點蝕。
齒面膠合是指在高速重載和低速重載傳動時,相嚙合齒面金屬發(fā)生粘焊現(xiàn)象,隨著齒面相對運動,粘焊處衩撕破脫胎換骨后輪齒表面沿滑動方向形成溝痕,一般出現(xiàn)在齒頂和齒根處。
齒面磨損是指當外界的硬屑落入運動著的齒面間,就可能產生磨粒磨損。另外當表面粗糙的硬齒與較軟的輪齒面相嚙合時,由于相對滑動,軟齒表面易被劃傷也可能產生齒面磨粒磨損。
塑性變形是當齒輪材料較軟面載荷摩擦力又很大時,嚙合過程中,齒面表層會沿著摩擦力的方向產生塑性變形從而破壞正確齒形。主動輪在節(jié)線附近形成凹槽,從動輪在節(jié)線附近形成凸脊。
1)按接觸疲勞強度校核
(1)
(2)
(3)
(4)齒寬:
(5)
由表8—119選取:
(6)
由圖8—32 選取
(7)
由圖8—34表8—120選取
,
(8) 圖8—35
(9)
由圖8—36查得:
(10)
由表8—122查得:
(11)
由圖8—38d查得:
(12)
(13)
由圖8—39,按允許點蝕查得:
(14)
由圖8—40
(15)
由圖8—41
,,
查得:
(16)粗糙度系數(shù)
由圖8—41,齒面粗糙度3.2,,
(17)
由圖8—43查得:
(18)齒數(shù)比u :
(19)
其中重合度系數(shù)取
(20)
(21)
得:
(22)
由此可知,齒輪的接觸疲勞強度通過。
2)按彎曲疲勞強度校核
(1) 圖8—34 表8—120
(2)
由圖8—44,查
(3) 直齒輪
得:
(4)
由圖8—47d查得:
(5)
由表8—124得:
(6)
由圖8—49
(7) 由圖8—50查得:
按
重合度
=[(-tan)+(-tan)]
=[20(tan(arccos-)+
72(tan(arccos- )]
=1.68
重合度系數(shù):
(8)
(9)
(10)
查表8—121得:
(11)
齒輪其他主要尺寸計算
齒輪分度圓直徑:
根圓直徑:
=
頂圓直徑:
3.5減速器傳動軸的設計校核
3.5.1 第1軸的設計計算
1)計算軸和齒輪上的作用力
其中:,
,
蝸桿分度圓直徑
蝸輪分度圓直徑
在傳動過程中,蝸桿齒面上所受的的力可以分解為3個相互垂直的分力:圓周力、徑向力、軸向力。
蝸桿圓周力:==
蝸桿軸向力: = =
蝸輪圓周力:
蝸輪軸向力:
徑向力:
2)初步估算軸的直徑
蝸桿的材料為35CrMo
由式計算軸的最小直徑,由于軸跨度很長且要要考慮軸上鍵槽的影響使軸加大60%來確保安全;
查表:取A=100
則
因為軸的最小直徑段通過聯(lián)軸器與電動機軸相連。由上可知電動機軸的直徑使。故取軸的最小直徑為。
3)軸的結構設計
(1)確定軸的結構方案
右軸承從軸的右端裝入,右邊靠軸肩定位,左邊靠軸承蓋。左軸承從軸的左端裝入,左邊靠軸肩定位,右邊靠軸承蓋。由于齒輪直徑小,故做成齒輪軸,齒輪軸段的長度取。右邊半聯(lián)軸器靠軸肩定位。采用單列圓錐滾子軸承和剛性聯(lián)軸器。圖的結構如圖3.1所示:
圖3.1
(2)確定各軸段直徑和長度
段 根據(jù),并且與電動機輸出軸的直徑相配合來選擇聯(lián)軸器并確定軸Ⅰ段的軸頸。根據(jù)選擇聯(lián)軸器型號為:YL10型。
公稱轉矩。軸孔長度,總長。軸的長度比轂孔長度少短一點為。由軸徑根據(jù)選擇鍵。尺寸為,,。
段 考慮到軸承端蓋的大小和厚度,以及端蓋的裝拆,所以②段軸的長度為,此段要定位聯(lián)軸器,所以軸的直徑要大于,故取。
段 此段上裝有圓錐滾子軸承,考慮到軸承的便于裝拆以及軸承端蓋對軸承的定位,取要大于,且要符合標準軸承內徑,故取。查暫選軸承的型號為32313,其寬度,基本額定載荷,。軸承潤滑方式選擇脂潤滑??紤]到軸承的定位取略小于軸承的寬度。。
段 便于拆卸軸承內圈且要定位軸承,。取軸肩。
段 根據(jù)蝸輪的分度圓直徑以及蝸桿的齒輪長度暫定。便于圓弧面蝸桿的加工要小于圓弧面齒輪的分度圓直徑。故取。
此段為圓弧面齒輪,根據(jù)蝸輪蝸桿嚙合傳動取蝸桿,
此段與⑤段對稱布置,所以,。
段 此段與④段對稱布置,所以,。
段 該段軸的直徑。查暫選軸承的型號為32313,其寬度,基本額定載荷,。軸承潤滑方式選擇脂潤滑。軸的長度等于軸承的寬度,。
3)確定軸承及齒輪作用力的位置
如圖所示,先確定軸承支點的位置,查31313軸承,起支點,因此軸的支承點到齒輪載荷作用點距離,。
4)繪制軸的彎矩圖和扭矩圖
(1)求軸承反力
H水平面:
由圖3.2(b)求軸承反力
由得:
解得:
由
解得:
V垂直面:
由圖3.2(c)求軸承反力
由得:
解得
由:
解得
(2)求齒寬中點處彎矩
H水平面
V垂直面
合成彎矩M圖3.2(d)
扭矩 圖3.2(e)
軸的彎矩圖和扭矩圖如下面所示:
圖3.2 軸的受力簡圖
5)按彎扭合成強度校核軸的強度
當量彎矩,取折合系數(shù)=0.6,則齒寬中點處當量彎矩 圖3.2(f)
=
=
軸的材料為,整體調質處理,硬度HB240~270,查得=930N/mm,由設計書中可查得材料許用應力= 90N/mm。
軸的計算應力為:
所以,該軸滿足強度要求。
6)確定危險截面:
根據(jù)載荷較大及截面較小的原則,選取截面B為危險截面
(1) 計算危險截面應力:
截面右側彎矩:
截面上的扭矩:T = 161040
抗彎截面系數(shù):21600mm3
抗扭截面系數(shù):43200mm3
截面上的彎曲應力:
截面上的扭轉剪應力:
彎曲應力幅:== 38
彎曲平均應力:0
扭轉剪應力的應力幅與平均應力相等,即:
1.865
(2)確定影響系數(shù):
軸的材料為,調質處理。
由表8-2查得 930 。440
280
軸肩圓角處的有效應力集中系數(shù)、
根據(jù) 0 ,
查機械設計表8-9可得:= 2.0
= 1.5
尺寸系數(shù) 、,根據(jù)軸的截面查圖8-12的得
= 0.7
= 0.75
表面質量系數(shù) 、 根據(jù)930 和表面加工方法為精車,查圖8-2,得
材料彎曲、扭轉的特性系數(shù) 、
?。? 0.1
= 0.5,= 0.05
由上面參數(shù)可得:
其中:
查表8-13中的許用安全系數(shù)值,查得該軸安全,校核通過。
3.5.2第2軸的設計計算
1)計算軸和齒輪上的作用力
其中:
蝸輪分度圓直徑
在傳動過程中,蝸輪齒面上所受的的力可以分解為3個相互垂直的分力:圓周力,徑向力,軸向力
蝸桿圓周力:==
蝸桿軸向力: ==
蝸輪圓周力:
蝸輪軸向力:
徑向力:
2)初步估算軸的直徑
取40Cr調質作為軸的材料
由式計算軸的最小直徑,由于要考慮軸上鍵槽及倒角的影響使軸加大10%來確保安全;
查表,取A=100
則
故取軸的最小直徑為。
3)軸的結構設計
(1)確定軸的結構方案
右邊兩個軸承從軸的右端裝入,左軸承從軸的左端裝入,蝸輪從軸的右端轉入靠左右兩軸承定位,滑移齒輪和內齒輪從軸的左端轉入。左端軸承靠箱體以及套筒定位,右端軸承靠端蓋定位。采用單列圓錐滾子軸承和深溝球軸承。
圖的結構如圖3.3所示:
圖3.3 軸的結構設計
(2)確定各軸段直徑和長度
①段 根據(jù),確定。
考慮到錐面端蓋的厚度,滑移齒輪的寬度,以及在回柱絞車運轉中的離合,剎車時,滑移齒輪在軸上移動的距離暫定,由于滑移齒輪在軸上既作滑移運動,又相對與軸作轉動,因此在此段軸上裝耐磨和減磨的軸套。查GB/T 18324-2001選擇軸套GB/T 18324-C90×105×160-CuSn8P。
②段 此段上裝有內齒輪,考慮到右邊圓錐滾子軸承的定位以及內齒輪的定位,取 ,。內齒輪與軸之間通過鍵聯(lián)結。由軸徑根據(jù)選擇鍵C型。尺寸,,。
③段 此段裝有圓錐滾子軸承,考慮到軸承的定位與裝拆,以及與其相鄰零件的裝拆。取。根據(jù)軸的直徑查暫選軸承的型號為30322,其寬度,基本額定載荷,。軸承潤滑方式選擇脂潤滑。考慮到軸承的定位此段軸的長度應小于圓錐滾子軸承的厚度。故。
④段 此段上裝有蝸輪,蝸輪的寬度為,考慮到蝸輪定位與裝拆問題取。,。蝸輪與軸之間通過鍵聯(lián)結。由軸徑根據(jù)選擇鍵。尺寸為,,。
⑤段 此段與3段對應,取。根據(jù)軸的直徑查暫選軸承的型號為30322,其寬度,基本額定載荷。軸承潤滑方式選擇脂潤滑。取此段軸的長度等于圓錐滾子軸承的厚度。故。
3.5.3第3軸的計算
1)此軸為過橋齒輪的支承軸,不傳遞轉矩,只承受彎矩。
軸上齒輪傳遞的功率:
軸上齒輪的轉速:
2)初步估算軸的直徑
取40Cr調質作為軸的材料,由式
由于此軸只承受彎矩,不傳遞轉矩。所以附加系數(shù)0.7.
查表取A=100
則 0.7×100
所以,取軸最小直徑
3)軸的結構設計
(1)確定軸的結構方案
此軸支承過橋齒輪。為了齒輪的便于裝拆,軸取階梯裝。分為三段,
兩邊直徑小中間直徑大。圖的結構如圖3.4所示。
圖3.4
(2)確定軸的直徑和長度
①段 此段取最小直徑。由于這一段起支承作用,考慮到箱體的厚度。取。
②段 上裝有過橋齒輪,為了齒輪兩邊有一定的空間,所以軸的長度應不齒輪厚度少大一點,過橋齒輪厚度為,所以取。為了齒輪的裝拆。此段直徑應比第一段的大,故取。過橋齒輪相對與軸作轉動,因此在此段軸上裝耐磨和減磨的軸套。查GB/T 18324-2001選擇軸套GB/T 18324-C90×105×100-CuSn8P。
③段 與一段對稱,。
4 滾筒軸的設計計算
4.1滾筒和齒輪上的作用力
由于滾筒軸只承受彎矩,并沒有承受轉矩。所以滾筒軸轉速為零。
為了便于計算。用軸上齒輪的參數(shù)來進行計算和校核。
其中:
軸上齒輪受力:
圓周力:= =
徑向力:
回柱絞車的最大拉力:
初步估算軸的直徑
取40Cr調質作為軸的材料
由式計算軸的最小直徑,由于滾筒軸主要承受彎矩。所以乘以0.95作為系數(shù)。
查表得40Cr取A=100
則
圓整
4.2確定軸的結構方案
滾筒軸在回柱絞車中時很重要的。它的結構設計直接關系到整個回柱絞車性能。對于滾筒軸設計成近乎對稱的結構,右圓柱滾子軸承從軸的右端裝入,左邊裝有密封圈。密封群左邊靠軸肩定位圓柱滾子軸承右端靠軸承端蓋定位。,同理,左圓柱滾子軸承從軸的左端裝入,右邊裝有密封圈。密封群右邊靠軸肩定位,圓柱滾子軸承左端靠軸承端蓋定位。軸的結構如圖4.1所示。
圖4.1
(1)確定各軸段直徑和長度
段 根據(jù),確定,根據(jù)滾筒支承座的厚度。確定。
段 考慮到軸與滾筒支承座之間的定位,所以此段軸的直徑要大于,故取。大齒輪靠螺栓與滾筒聯(lián)結在一起。從而帶動滾筒轉動卷繩。大齒輪厚度為,大齒輪在轉動過程中與支承座不發(fā)生干涉,所以此段長度要大于大齒輪的厚度,軸承端蓋的厚度,故取。
段 此段上裝有圓柱滾子軸承和密封圈,考慮到軸承和密封圈的便于裝拆以及軸承端蓋對軸承的定位,取要大于,且要符合標準軸承內徑,故取。查機械設計手冊暫選軸承的型號為N2228,其寬度,基本額定載荷,。軸承潤滑方式選擇脂潤滑。查機械設計手冊得密封圈寬度為。為了軸承和密封圈的定位軸的長度應小于兩者寬度之和。故取。
段 此段為軸肩,便于定位。取,取。
段 根據(jù)滾筒軸結構上的需要。取,。
段 此段與4段相對稱,為軸肩,便于定位。取,
段 此段與3段對稱布置,上裝有圓柱滾子軸承和密封圈,考慮到軸承和密封圈的便于裝拆以及軸承端蓋對軸承的定位,取。查機械設計手冊暫選軸承的型號為N2228,其寬度,基本額定載荷,。軸承潤滑方式選擇脂潤滑。查機械設計手冊得密封圈寬度為。為了軸承和密封圈的定位軸的長度應小于兩者寬度之和。故取。
段 此段與1段相對應,所以取,。
4.3軸的強度校核
為了便于計算,先確定各個作用點以及支點的位置。如圖4.2所示:
4.3.1繪制軸的彎矩圖和扭矩圖
先將大齒輪、卷筒看作一個整體,求軸承作用卷筒上的力。
經(jīng)分析知,當鋼絲繩位于靠大齒輪端時,軸承、軸的受力最大,將各力移至卷筒軸心上:
1)求滾動軸承反力
H水平面:
由圖4.2(a)求軸承反力
由得:
解得:
由
解得:
V垂直面:
由圖可知,在垂直面軸承沒有受力。
2)對整個滾筒軸分析
(1)求軸承座反力
H水平面:
由圖4.2(b)求軸承反力
由得:
解得:
由
解得:
V垂直面:
由圖求軸承座反力
由得:
解得
由:
解得
(2)求各處的彎矩
B點處
H水平面:
V垂直面:
C點處
H水平面:
V垂直面:
D點處
H水平面:
V垂直面:
合成彎矩M:
軸的彎矩圖和扭矩圖如下面4.2所示:
圖4.2
3)按彎扭合成強度校核軸的強度
由于滾筒軸只承受彎矩,沒有扭矩。
所以;
軸的材料為40Cr,整體調質處理,硬度HB240-285
查得=685N/mm,由設計書中可查得材料許用應力= 60N/mm。
軸的計算應力為:
所以該軸滿足強度要求。
4)確定危險截面:
根據(jù)載荷較大及截面較小的原則,選取截面D為危險截面
(1) 計算危險截面應力:
截面右側彎矩:
抗彎截面系數(shù):172800
截面上的彎曲應力:
彎曲應力幅:== 14.53
彎曲平均應力:0
(2)確定影響系數(shù):
軸的材料為40Cr 鋼,調質處理。
由表8-2查得 685 ,335
185
軸肩圓角處的有效應力集中系數(shù)、
根據(jù) 0 ,
查機械設計表8-9可得:= 2.0
= 1.5
尺寸系數(shù) 、,根據(jù)軸的截面查圖8-12的得
= 0.7
= 0.75
表面質量系數(shù) 、 根據(jù)685 和表面加工方法為精車,查圖8-2,得
== 0.84
由上面參數(shù)可得:
查表8-13中的許用安全系數(shù)值,查得該軸安全,校核通過。
5 系統(tǒng)傳動部件的校核
5.1聯(lián)軸器上鍵的校核
查機械零件設計手冊表5-