喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================
中文翻譯
機構和機器原理
1.機構介紹:
機構的功用是作為機械作用的一個部分從一個剛體到另一個剛體傳送即傳遞運動。
一般能用作機構基本零件的機械裝置有三種類型:
1.齒輪裝置。那是在回轉軸之間進行接觸傳動的嚙合構件。
2.凸輪裝置。把輸入構件的均勻運動轉換成輸出構件的非均勻運動的裝置。
3.平面機構和空間機構也是能使一個點或一個剛體產(chǎn)生機械運動的有用裝置。
運動鏈是一個構件系統(tǒng)裝置即若干個剛體,它們或者彼此鉸接或者互相接觸,方式上是允許它們彼此間產(chǎn)生相對運動。如果構件中的某一構件被固定而使任何其他一個構件運動到新的位置將會引起其他各個構件也運動到確定的預期的位置上的話,該系統(tǒng)裝置就是一個可約束的運動鏈。如果構件中的某一構件仍保持固定而使任一運動到達一新的位置而不會使其他各個構件運動到一個確定的預期的位置上的話,則該系統(tǒng)裝置是一個非約束運動鏈。
機構或連桿構件是一個可約束的傳動鏈而且是一個從輸入到輸出以傳遞運動和(或)力為目的的機械裝置。連桿機構是由通常被認為是剛體構件或桿組成的,它們是以銷軸鉸接的,例如用柱銷(圓形的)或棱柱體銷軸鉸接,以便成形開式或閉式(回環(huán)式)的運動鏈。這樣的運動鏈在至少有一個構件被固定的條件下:(1)如果至少有兩個構件能保持運動,就變?yōu)闄C構,(2)如果沒有一個構件能夠運動,則就成為結構。換句話說,機構是允許其“剛性構件”之間相對運動,而結構則不能。由于連桿機構做成一簡單機構而且能設定實現(xiàn)復雜的任務,例如非線性運動和力的傳遞運動。它們在機構學研究中將受到更多的關注。
機構被用于許多許多的機器和裝置中。最簡單的封閉式的連桿機構就是四桿機構,四桿機構有三個運動構件(加上一個固定構件)并且有四個銷軸。連接動力源的構件即原動件,而具有一個移動鉸和一個固定鉸者叫做輸入構件。輸出構件將一個移動鉸和另一個固定鉸連系起來。連接構件即浮動構件將兩個移動的鉸(回轉副)連系起來,因而連接構件就將輸入傳送到輸出。
四桿機構若使一個或幾個構件無限長而產(chǎn)生某些特殊的構造。曲柄滑塊(即曲柄和滑塊)機構就是一個四桿機構特例。其以一個滑塊替換一個無限長的輸出件。內燃機就是建立在這一機構基礎上。有著另一種形式的四桿機構,其中滑塊是在一運動的構件上導移運動而不是在一固定構件上。這些就被稱為曲柄滑塊機構的變換,它是其中一個構件(曲柄、連桿或滑塊)被固定時形成的。
雖然四桿機構和曲柄滑塊機構是非常有用而且在成千上萬的應用中都可找到。但是我們還看到,這些連桿機構其性能水平的發(fā)揮已經(jīng)受到限制。具有更多構件的連桿機構常常用于更多要求的情況中。然而可以設想多回環(huán)的連桿機構的運動常常是更為困難的,特別是當其他零件出現(xiàn)在同一圖中的時候,要進行更復雜機構的運動分析:第一步是繪制一等效運動圖即示意圖。這示意圖用于電路圖解類似的目的,即僅僅表示機構的主要本質的意圖,然而它要體現(xiàn)影響其運動的關鍵的尺寸。運動圖可用兩種形式中的一種:一是草圖(按比例畫出,但放大比例不精確),二是比例準確的運動圖(通常用于進一步分析其位置、位移、速度,加速度,力和扭矩傳遞等等)。為了便于參考,對構件進行順序編號,(以靜止構件編號為1開始編寫),而回轉副則以字母表示。
機構運動分析的第二步:畫一個圖解圖,是要確定機構的自由度數(shù)。依據(jù)自由度,可意指需要若干個獨立輸入的運動的數(shù)目,以確定機構所有的構件相對于地面的位置。人們可以想象存在數(shù)以千計的不同類型的連桿機構。你可想象一個袋子包容大量的連桿機構的組元:二桿組,三桿組,四桿組等等,以及構件,回轉副,移動副,凸輪隨動件,齒輪,齒鏈,鏈輪,皮帶,皮帶輪等等。(球形運動副,螺旋副以及允許三維相對運動的其他連接尚未包括進去,這里,僅僅討論平行平面內的平面運動)。而且你可以想象一下把這些組元放在一起而形成的各種類連桿機構的可能性。存在如何幫助人們控制所形成這些機構的規(guī)律嗎?實際上,大多數(shù)機構的任務是要求一個單一的輸入被傳遞到一個單一的輸出。因此單一自由度的機構是使用最多的一種機構類型。例如,由直覺即可以看出:四桿機構就是一個單一自由度的連桿機構。
畫運動圖和確定機構自由度的過程,就是運動分析和綜合過程的第一個階段。在運動分析中,根據(jù)機構的幾何形狀加上可能知道的其特性(如輸入角、速度,角加速度等)來研究確定具體的機構。另一方面,運動綜合則是設計一個機構以完成一個所要求的任務的過程。于此,選擇新機構的類型和尺寸是運動綜合的一個部分。設想相對運動的能力,能推想出之所以這樣設計一個機構的原因和對一個具體設計進行改進的能力是一個成功的機構學家的標志。雖然這些能力來自先天的創(chuàng)造性,然而更多的是因為掌握了從實踐中提高的技術。
1.1運動分析:
最簡單最有用的機構之一是四桿機構。以下論述中的大部分內容集中討論連桿機構上,而該程序也適用于更復雜的連桿機構。
我們已經(jīng)知道四桿機構具有一個自由度。關于四桿機構,有沒有要知道的有用的更多內容呢?的確是有的!這些包括格拉肖夫準則,變換的概念,死點的位置(分歧點),分支機構,傳動角,和他們的運動特征,包括位置,速度和加速度。
四桿機構可具有一種稱作曲柄搖桿機構的形式,一種雙搖桿機構,一種雙曲柄(拉桿)機構,致于稱作哪一種形式的機構,取決于跟機架(固定構件)相連接的兩桿的運動范圍。曲柄搖桿機構的輸入構件,曲柄可旋轉通過360°并連續(xù)轉動,而輸出構件僅僅作搖動(即搖擺的桿件)。作為一個特例,在平行四桿機構中,輸入桿的長度等于輸出桿的長度,連接桿的長度和固定桿(機架)的長度,也是相等的。其輸入和輸出都可以作整周轉動或者轉換成稱作反平行四邊形機構的交叉結構。格拉肖夫準則(定理)表明:如果四桿機構中,任意兩桿之間能作連續(xù)相對轉動,那么,其最長桿長度與最短桿長度之和就小于或等于其余兩桿長度之和。
應該注意:相同的四桿機構,可有不同的形式,這取決于哪一根桿被規(guī)定作為機架(即作固定桿)。運動變換的過程就是固定機構傳動鏈中的不同的桿件以產(chǎn)生不同的機構運動過程。除了具備關于構件回轉范圍的知識之外,還要具備如何使機構在制造之前就能“運轉”的良好措施,那將是很有用的。哈登伯格(Hartenberg)說到:“運轉”是一個術語,其意義是傳給輸出構件的運動的有效性。它意味著運轉平穩(wěn),其中能在輸出構件中產(chǎn)生一個力或扭矩的最大分力是有效的。雖然最終的輸出力或扭矩不僅是連桿幾何圖形的函數(shù),而且一般也是動力或慣性力的結果,那常常是大到如靜態(tài)力的幾倍。為了分析低速運轉或為了易于獲得如何能使任一機構“運轉”的指數(shù),傳動角的概念是非常有用的。在機構運動期間,傳動角的值在改變。傳動角0°可發(fā)生在特殊位置上。在此特殊位置上輸出桿將不運動而與施加到輸入桿上的力多大無關。事實上,由于運動副摩擦的影響,一般根據(jù)實際經(jīng)驗,用比規(guī)定值大的傳動角去設計機構。衡量連桿機構傳遞運動能力的矩陣基礎的定義已經(jīng)研究出來。一個決定性因素的值(它含有對于某個給定機構圖形,位置的輸出運動變量對輸入變量的導數(shù))是該連桿機構在具體位置中的可動性的一個尺度。
如果機構具有一個自由度(例如四桿機構),則規(guī)定的一個位置參數(shù),如輸入角,就將完全確定該機構休止的位置(忽視分支機構的可能性)。我們可研究一個關于四桿機構構件絕對角位置的分析表達式。當分析若干位置和(或)若干不同機構時候,這將是比幾何圖形分析程序要有用得多,因為該表達式將使自動化計算易于編程。實現(xiàn)機構速度分析的相對速度法即速度多邊形是幾種有效的方法之一。這端(頂)點代表著機構上所有的點,具有零速度。從該點到速度多邊形上的各點畫的線代表著該機構上相應各點的絕對速度。一根線連接速度多邊形上的任意兩點就代表著作為該機構上兩個對應的點的相對速度。
另外的方法就是瞬時中心法,即瞬心法,該方法是非常有用的而且常常是在復雜連桿機構分析時較快的方法。瞬心是一個點,該點在那一瞬間,機構上的兩構件之間不存在相對運動。為了找出已知機構某些瞬心的位置,肯尼迪(Kennedy)三中心理論就非常有用。它是說:彼此相對運動的三個物體的三個瞬心必定是在一直線上。
機構各構件的加速度是令人感興趣的,因為它影響慣性力,繼而影響機器零件的應力、軸承載荷、振動和噪音。由于最終的目的是機器和機構慣性力的分析,所有加速度的各分量都應一次性地畫在同一坐標系中——機構的固定構件的慣性坐標系中表示出來。
應注意的是:相對于固定回轉副的回轉剛體上的一點加速度分量通常有兩個。一個分力方向切于該點的軌跡,其指向與該物體的角加速度方向相同,并被稱為切向加速度。它的存在完全是由于角速度的變化率引起的。
另一個分量,總是指向物體的回轉中心,被稱為標準的向心加速度,這個分量由于速度矢量的方向發(fā)生改變而存在。
運動的綜合:
機構是形成許多機械裝置的基本幾何結構單元,這些機械裝置包括自動包裝機、打印機、機械玩具、紡織機械和其他機械等。典型的機構要設計成使剛性構件相對基準構件產(chǎn)生所希望的運動。機構的運動設計即運動的綜合,第一步常常是先設計整部機器。當考慮受力時,要提出動力學方面的問題,軸承的荷載、應力、潤滑等類似的問題,而較大的問題是機器結構問題。
運動學家把運動學定義為“研究機構的運動和創(chuàng)建機構的方法”。這個定義的第一部分就涉及運動學分析。已知一個機構,其構成的運動特性將由運動學分析來確定。敘述運動分析的任務包含機構的主要尺寸、構件間的相互連結和輸入運動的技術特性或驅動方法。目的是要找出位移、速度、加速度、沖擊或跳動(二階加速度),和可能發(fā)生的各構件的高階加速度以及所描述徑跡和由某些構件來實現(xiàn)的運動。定義的第二部分可用以下兩方面來解釋:
1.研究借助機構來產(chǎn)生給定運動的方法
2.研究建造能產(chǎn)生給定運動機構的方法,在兩個方案中,運動是給定的而機構是創(chuàng)建的。這就是運動綜合的本質。這樣運動綜合涉及到為給定性能的機構的系統(tǒng)設計。運動綜合方面又可歸結為以下兩類:
1.類型綜合。規(guī)定所要求的性能,怎樣一種類型的機構才是合適的?(齒輪系,連桿機構?還是凸輪機構?)而機構應具有多少構件?需要多少個自由度?怎樣的輪廓結構才是所希望的?等等。關于桿件數(shù)目和自由度的考慮通常被認為是類型綜合中被稱作為數(shù)量綜合的一個分支領域。
2.尺寸綜合。運動綜合的第二個主要類型是通過目標法來確定的最佳方法。尺寸綜合試圖確定機構的重要尺寸和起動位置,該機構是為著實現(xiàn)規(guī)定的任務和預期的性能而事先設想的。
所謂重要的尺寸意思是指關于兩桿、三桿等的長度或桿間距離,構件數(shù)和軸線間的角度,凸輪輪廓尺寸,凸輪隨動件的直徑,偏心距,齒輪配額等等。預想機構類型可能是曲柄滑塊機構、四桿機構,帶盤型從動件的凸輪機構,或者是以拓撲學方法而非因次分析法所確定的具有某種結構形狀更為復雜的連桿機構。對于運動綜合,慣例上有三個任務:函數(shù)生成,軌跡生成和運動生成。
在函數(shù)生成機構中輸入和輸出構件的轉動或移動必須是相互關聯(lián)的。對于一個任意函數(shù)y=f(x),一個運動綜合的任務可能是設計一個連桿機構使輸入和輸出建立起關系以便使得在xo<x<xn-1的范圍內輸入按x運動,而輸出按y=f(x)運動。在輸入和輸出件回轉運動情況下,轉角φ和φ分別是x和y的線性模擬。當輸入件回轉到一個獨立x值時,在一個“黑箱”的機構中,使輸出構件轉到相對應的由函數(shù)y=f(x)決定的數(shù)值上。這可被認為是機械模擬計算機的最簡單的情形。各種不同的機構都可以包含在這個“黑箱”內,然而對于任意函數(shù)的無誤差生成,四桿機構是無能為力的,僅僅可能在有限精確度內與之相匹配。它廣泛用于工業(yè)上,因為四桿機構在構建和維修上都是簡單的。
在軌跡生成機構中,在“浮動桿”上一個點要描畫一條相對于一個固定坐標系確定的軌跡。如果該軌跡點是既要與時間相關又要與位置相關,該任務被稱之為預定周期的軌跡生成。軌跡生成機構的一個例子就是設計來投擲棒球或網(wǎng)球的四桿機構。在這種情況下,點P的軌跡將是這樣:在預定的位置撿起一個球,并在預定的時間周期內沿著預定的徑跡把球傳送出去,能達到合適的速度和方向。
機械裝置設計中有著許多情形,在這些情形中既要導引剛體通過一系列規(guī)定的、受限制的獨立位置,又要在減少受限制而且獨立的位置的數(shù)目時,對運動體的速度和(或)加速度加以約束,那是必要的。運動生成或剛體導引機構要求:一個完整的物體要被導引通過一預定的運動序列。作為被導引的物體通常是“浮動構件”的一部分,那不僅是預定點P的軌跡,也是通過該點并嵌入該物體內的線的轉動。例如,該線可能代表自動化機械中的一個載體件,那是在載體件上的一個點具有一個預定的軌跡而該載體件又具有一個預定的角度方位。預定方式裝料機的吊斗的運動是運動生成機構的另一個例子。吊斗端的軌跡是有極限的。因為其端口必須實現(xiàn)挖掘的運動軌跡,緊跟著要實現(xiàn)提升和傾瀉的軌跡。吊斗的角度方位對保證斗中物料從正確的位置傾瀉(倒)同樣是重要的。
凸輪和齒輪:
凸輪裝置是把一種運動改變成另一種運動的方便裝置。這種機器零件具有曲面或槽面,該曲面或槽面與從動件相配合并將運動傳給從動件。凸輪的運動(通常是轉動)被傳遞給從動件作搖動或移動,或兩者均有。由于各種各樣的幾何體和大量的凸輪與從動件相結合,因此凸輪是一種極多功能的萬用的機械零件。雖然凸輪和從動件可以為運動、軌跡和功能生成而設計,但其主要是用于利用凸輪和從動件作為功能生成構件。
根據(jù)凸輪形狀,最普遍的凸輪種類是:盤形傳動凸輪(兩維的,即平面的)和圓柱形凸輪(三維的,即空間的)機構。從動件可以用幾個方法分類:根據(jù)從動件的運動,例如移動或搖動來分類,根據(jù)平移式(直線)從動件運動是沿徑向的還是從凸輪軸中心偏心的和根據(jù)從動件接觸面的形狀(比如平面、輥子、點——刀尖式,球面,平面曲線或空間曲面)。
對于一個對心直動滾子從動件盤形凸輪,可畫出的與凸輪表面相切且與輪軸同心的最小圓是基圓。隨動件的點就是產(chǎn)生節(jié)線的輥子中心的點。壓力角就是輥中心軌跡方向線和通過輥子中心的節(jié)線的法線之間的夾角而且是傳動角的余角。忽略摩擦影響,這法線方向跟凸輪與從動件之間接觸力方向是重合一致的。像在一連桿機構中,壓力角在循環(huán)運轉過程中變化且是凸輪把運動作用力傳遞到從動件去的一種量度。大壓力角將產(chǎn)生施加到從動件桿上的側向力,因摩擦力存在,那將勢必把從動件限制在導槽中。在自動化機械中的許多應用需要間歇運動。一個典型的例子將要求一個含有上升一停歇一返回和可能另一個停歇的周期,每階段經(jīng)過一個指定的角度,伴隨著一個所要求的從動件的位移,這個位移以厘米或度來度量。設計者的工作就是相應地設計出該凸輪。首先要做的決策就是要選擇凸輪從動件的類型。規(guī)定的應用可能要求凸輪和從動件相結合。轉化為決策的某些因素有:幾何形狀條件,動力條件,環(huán)境條件和經(jīng)濟因素。一旦凸輪與從動件運動副類型被選定,則從動件運動就必定選定。因此,速度、加速度和在某些情況下,從動件位移的進一步的方案實屬極端重要。
齒輪是借助于輪齒成功嚙合來傳遞運動的機器零件。齒輪從一根回轉軸到另一回轉軸傳遞運動或傳遞運動到一傳動齒條。多數(shù)應用中都以恒定角速比(或常定扭矩比)而存在。恒定角速比應用中必定是軸向傳動。在各種各樣有用的齒輪類型基礎上,輸入軸和輸出軸需要在一直線上或需要互相平行都不受什么限制。由于使用非圓齒輪,非線性角速比也是很有用的。為了保持恒定的角速度,各個齒輪齒廓必須服從齒輪嚙合的基本規(guī)律:為了一對齒能傳遞恒定角速比,他們接觸齒廓的形狀必須是要這樣:公法線通過兩齒輪中心連線上的固定點。
滿足嚙合基本規(guī)律的兩嚙合齒廓被稱為共軛齒廓。盡管有著許多滿足相嚙合齒的可能齒形能被設計出來,以滿足基本嚙合規(guī)律,但一般僅有兩種在使用:擺線齒廓和漸開線齒廓。漸開線具有若干重要的優(yōu)點:它易于加工制造和一對漸開線齒輪之間的中心距可以變化而不改變速比,當使用漸開線齒廓時,可不要求精密的軸間公差。
有幾種標準齒輪可供選用。為了在平行軸條件下應用,通常使用直齒圓柱齒輪,平行軸斜齒輪或人字齒齒輪。在相交軸的情況下使用直齒錐齒輪或螺旋齒輪。對于非相交軸和非平行軸齒輪傳動,交錯軸螺旋齒輪,蝸桿蝸輪,端面齒輪、斜齒圓錐齒輪或準雙曲面齒輪將被選用。對于直齒圓柱齒輪,相嚙合齒輪的節(jié)圓是彼此相切的。他們互相滾動而無滑動。齒頂高是輪齒伸出超過節(jié)圓的高度(也是節(jié)圓和齒頂圓之間在徑向的距離)。頂隙是一個給定齒的齒根高(在節(jié)圓以下的齒高)大于與它相嚙合的齒輪的齒頂高的量(差值)。齒厚是沿著節(jié)圓圓弧上跨齒的距離,而齒間距(齒槽S)是沿著節(jié)圓圓弧上相鄰兩齒間的空間距離。而齒側間隙是在節(jié)圓上的齒槽寬度大于其相嚙合齒輪在節(jié)圓上的齒厚的差值。
螺紋件、緊固件和聯(lián)接件:
固緊和聯(lián)接零件的典型方法包括利用諸如螺栓、螺帽、有頭螺釘、定位螺釘、鉚釘、鎖緊裝置和鍵。零件也可以用熔焊、銅焊和夾緊連接。在工程圖學和金屬加工工藝研究中常常包括關于各種連接方法的說明,在工程上對此很感興趣的,求知欲強的任何人自然會獲得關于固緊方法上良好的基礎知識。
如果讓一個穿制服的人去選擇他能想象的機械設計方面最枯燥最不感興趣的學科的話,那么他就會選擇緊固件學科,即螺栓和螺帽。事實上,術語“螺栓和螺帽”是與艱苦、單調的工作同義。但是乏味的工作總是需要的。人們嚴肅設想能有一群螺栓螺帽制造者組成一個協(xié)會并在一起召開年會嗎?那樣的話,還有什么學科不能讓人感興趣呢?
盡管埋怨,但這學科在機械設計整個領域中還是最使人感興趣的學科之一。在緊固件方面新的種類變化數(shù)目超過你能注意到的有巨大變化的任何時期。多得如潮水般的有用的緊固件可供設計者任意選擇使用。尚有一件事,你知道嗎?好的螺栓的材料應該是強固而堅硬的,而好的螺帽的材料應該是軟而有韌性的?;蛘吣阒绬幔咳舸_定在使用的螺栓、螺帽,你應該盡可能地把它們旋緊。如果在上緊過程中,由于旋緊這螺栓過程中而未發(fā)生失效現(xiàn)象,那么螺栓將有不會失效的理想的可能性。在材料方面隨后你將發(fā)現(xiàn)這些問題的原因。你將掌握螺栓、螺帽為什么會松動和你必須怎樣令它保持旋緊狀態(tài)。連接零件的方法在工程結構質量方面是極端重要的。在設計和使用的各種情況下,充分了解緊固件和連接件的性能那是必要的。
大型噴氣發(fā)動機客機像波音747和洛希德1011,需要250萬個緊固件,其中一些每個要花數(shù)美元。例如波音747,大約需要裝70000個鈦合金緊固件,全部大約要花150000美元;400000個具有精密公差的其他緊固件,大約要花250000美元;和30000個擠壓用鉚釘,價值每個50美分。為了保持低成本,波音和洛希德和他們的工程承包人常常重新審查緊固件的設計、安裝技術和加工工具。節(jié)省設計和加工工具費用將找到一個預備市場,那將像Jumbo噴氣發(fā)動機增值那樣而增長價值。
緊固件是根據(jù)計劃并以如何使用他們來命名的,而不是根據(jù)其在具體例子中實際的應用。如果記住了這個基本事實,就將不難區(qū)別螺釘和螺栓。如果所設計的產(chǎn)品其主要目的是把它裝入到已攻絲的螺紋孔中,那就是螺釘。這樣螺釘是要在螺釘頭上施加扭矩來旋緊的。如果所設計的產(chǎn)品打算跟螺母配合使用,那就是螺栓。螺栓是靠在螺母上施加扭矩來旋緊的。雙頭螺栓就像刻了螺紋的桿,一端旋入螺紋孔中,另一端再裝上螺帽,那就是確定產(chǎn)品名稱的意義,并不是其實際使用。這樣,在各種場合用鉆頭去鉆孔穿過兩塊鋼板,人們就會用螺栓和螺帽來連接它們,這可能是人們所希望的。有四種形式的螺釘頭,最普遍使用四種帶帽螺釘是:六角頭螺釘,槽頭螺釘,平頭螺釘和內六角沉頭螺釘。
當想要一個可以被拆開又不破壞被聯(lián)接零件的聯(lián)接時,而且這個聯(lián)接又要有足夠的強度以承受外拉力和剪力或這兩種力的結合,使用淬火墊圈的簡單螺栓聯(lián)結是一個很好的方法。在這種連接中,首先把螺栓上緊以產(chǎn)生一預緊載荷初拉力,而后施加外拉力載荷和剪切載荷。預載荷的作用是使被聯(lián)接零件處于壓應力狀態(tài)以便更好地抵抗剪切載荷。螺栓預加載荷的重要性不能被過高地估計。較高預載荷能提高螺栓聯(lián)結的抗疲勞能力和改善鎖緊作用。
已經(jīng)知道:高預載荷在重要的螺栓聯(lián)接中是非常希望的。下一步我們必須考慮,當要裝配零件時,實際研制預載的保險的辦法。
如果具有橫截面積為A的螺栓總長度為L,當它被裝配時,實際上是可以用千分表來測量的。由于預載力F而使螺栓伸長為d,d可以利用公式d=FL/AE來計算。式中E是螺栓材料的彈性模量。那么簡便地旋緊螺母直至使螺栓伸長達到d。這就保證了所希望的預緊載荷已經(jīng)達到。
然而螺釘?shù)纳扉L通常是不可能被測量的。因為螺釘端部可能是盲孔。在許多情況下,去測量螺栓的伸長也是不實際的。在這樣情況下,要求能產(chǎn)生具體預載荷的扭矩扳手必須加以測定。因為扭矩扳手,氣動沖擊扳手,或螺帽旋動圈數(shù)扳手等方法,可能被使用。
扭矩扳手具有內裝指示盤,以便指示正確的扭矩。用沖擊扳手時,要調節(jié)空氣壓力,當獲得正確扭矩時,扳手即停止轉動?;蛘哂心承┌馐?,當達到希望的扭矩時,壓縮空氣被自動關掉。要使用螺母轉動圈數(shù)法扳手首先要求我們確定適度緊的意義。適度緊的狀態(tài)就是借助于沖擊扳手沖擊若干次所達到的緊度的意思。已經(jīng)達到適度緊狀態(tài)時候,所有的附加旋動會在螺栓中產(chǎn)生有益張緊力。旋動螺母圈數(shù)法要求:必須先旋動零點幾轉以便產(chǎn)生在適度緊基礎上所要求的預緊載荷。例如對于重型的六角頭螺栓的旋轉螺母圈數(shù)法的技術說明書稱:螺母應從適度緊狀態(tài)出發(fā)最少被旋動到180°。注意這也是關于客車輪子螺母預緊的大體合適的轉數(shù)。
1.2減(耐)摩擦軸承:
減摩擦(滾動)軸承這個術語被用于描述一類軸承,其主要載荷是通過滾動接觸而不是滑動接觸的元件傳遞的。在滾動軸承中起動摩擦和運行摩擦大體上是相同的,有關摩擦的有效載荷、速度和溫度變化是小的。把滾動軸承說是“減摩擦軸承”可能是錯的,因為某些軸承的摩擦不存在,但是這一術語已普遍地徹底地用于工業(yè)上了。從機械設計者的觀點出發(fā):研究減摩擦軸承當與所研究的課題相比較時,可提供幾方面的思考。減摩擦軸承方面的專家面臨著設計一組組成滾動軸承的元件,這些元件必須設計得能裝入所規(guī)定的尺寸空間,它們必須設計成能承受具有某種特性的載荷而最后這些元件必須設計成當規(guī)定條件下運轉時具有令人滿意的壽命。因此軸承專家必須考慮這些事項:破壞荷載、摩擦力、熱、抗腐蝕、運動學問題,材料性質、潤滑、加工公差、裝配、使用和費用。從所有這些因素的考慮出發(fā),在判斷中他要達到一種妥協(xié)方案。這一方案就是所陳述問題的最佳答案。
減摩擦軸承制造者已經(jīng)做出了有用的幾乎是無數(shù)規(guī)格和形式的滾動軸承。他們已經(jīng)將這些規(guī)格和類型連同所建議的載荷和速度一起在手冊中列表顯示。這樣機械設計專家的任務就不是如何去設計滾動軸承而是如何去選擇滾動軸承的問題了。
然而我們不能如此簡單地討論這一課題。至少,簡短地研討減摩擦軸承的內容應該是關于機械設計文獻的一部分,進而,如果我們考察過多種機械元件,例如齒輪、軸承、緊固件、離合器和類似元件,減摩擦軸承代表著關于機械壽命精確度,荷載能力和可靠性的完美的頂峰,那可能就是真的了。這完美程度未曾有過靠偶然的因素來實現(xiàn)。那是一個最佳工程實踐的例子,并可將所掌握知識在別處運用。
制造出的軸承承受純徑向載荷、純軸向載荷或者承擔上述二者相結合的載荷。球軸承的術語在圖1中有說明(在這未表示出來),該圖表示了軸承的四個主要零件。這些零件就是外圈、內圈、鋼球即滾動元件,和分隔器。在便宜的軸承中分隔器是被省略的,但它具有重要的分隔鋼球的作用,因之將不會發(fā)生擦傷接觸。
單列深溝軸承將承受徑向載荷和一些軸向載荷??繉热σ破揭欢ㄎ恢茫缓髮撉蛉霚喜壑?,加載后鋼球被分開,而分隔器是后來再裝配上去的。
利用內外圈上的裝填缺口,能讓較多的鋼球被填塞進去,這樣來增加承載能力。然而要注意減小軸向載荷,因為當軸向的載荷出現(xiàn)在鋼球正對準圈上缺口時,鋼球將發(fā)生振擺擦傷,以致跳出。
角接觸軸承會產(chǎn)生較大的軸向推力。所有這些軸承都可以在一邊或兩邊用擋板防護。這些擋板并不是完全密閉的但對灰塵污物提供防護措施。許多軸承制造時在一端或兩端予以密封。當兩端都進行密封時,軸承在制造廠就已潤滑。盡管密閉軸承假定為了提高壽命已被潤滑過,但有時還是要規(guī)定潤滑的方法。
單列軸承會經(jīng)受小量的軸向偏移或撓曲,但這里是個嚴重的問題,可能要用自動調心軸承。雙列軸承做成多種類型和規(guī)格。雖然雙列軸承一般需要較少的零件,占有較小的空間,但為了同樣的使用目的,有時兩個單列軸承一起使用。
大量的標準的滾子軸承也是很有用的。圓柱滾子軸承比同樣規(guī)格的球軸承將承受較大的載荷,因為有較大的接觸面。然而他們也有缺點,那就是其滾道和滾子幾乎都要求有精密的幾何形狀。圓形滾子推力軸承、滾針軸承,圓錐滾子軸承各自都用于不同的用途。
當減摩擦軸承中的鋼球或滾子進入載荷區(qū)中滾動時,在內圈、滾動元件和外圈上產(chǎn)生Hertzian應力,因為接觸元件在軸向的曲率與徑向的曲率是不同的。為了計算這些應力的公式比起Hertzian方程要復雜得多。如果軸承清潔并得到合適的潤滑和安裝,對灰塵和污物入口處作了密封,并在這種狀況下還作了維護且在合理的溫度下運轉,那么金屬的疲勞將僅僅是由于受到損壞時才會發(fā)生。由于這應力的作用將是數(shù)以萬計,因此,軸承壽命這術語就非常普遍地使用。
在疲勞損傷首次發(fā)生之前,單個軸承的壽命是以軸承運轉的總轉數(shù)來定義或以軸承在給定的常速下運轉的小時數(shù)來定義。當然疲勞具有統(tǒng)計學上的本質意義,因此如果試驗大量的軸承,某些離中趨勢是可以預料到的。一組看起來相同的球軸承的額定壽命被定義為:其百分之九十的軸承在沒有出現(xiàn)疲勞損傷前能夠完成或者超額完成運行的轉數(shù),或當這組軸承以某個給定的恒定速度運行時的小時數(shù)。
減摩軸承在大量的機械產(chǎn)品中使用,例如玩具、家居用品,制冷設備、輥子底架、車庫門、卡車、工業(yè)機械、牙科設備和引導導彈發(fā)射的裝置等等。這些應用中的某些用途需要精密軸承,但對于其他場合,由于使用精密軸承成本高而被禁止使用。
MECHANISMS AND MACHINE THEORY
Aurelian Vadean ?, Dimitri Leray , Jean Guillot
Adeapartment of Mechanical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville,Montreal, Québec, Canada H3C 3A7
bLaboratoire de Genie Mecanique de Toulouse - COSAM, INSA Toulouse, 135 Avenue de Rangueil,Toulouse Cedex 4,
Automotive sub-actuators tooth side clearance adjustment optimization techniques
1.Introduction to Mechanism:
The function of a mechanism is to transmit or transform motion from one rigid body to another as part of the action of a machine. There are three types of common mechanical devices that can be used as basic elements of a mechanism.
1、Gear system, in which toothed members in contact transmit motion between rotating shafts.
2、Cam system, where a uniform motion of an input member is converted into a nonuniform motion of the output member.
3、Plane and spatial linkages are also useful in creating mechanical motions for a point or rigid body.
A kinematic chain is a system of links, that is, rigid bodies , which are either jointed together or are in contact with one another in a manner that permits them to move relative to one another. If one of the links is fixed and the movement of any other link to a new position will cause each of the other links to move to definite predictable position, the system is a constrained kinematic chain. If one of the links is held fixed and the movement of any other link to a new position will not cause each of the other links to move to a definite predictable position then the system is an unconstrained kinematic chain,
A mechanism or linkage is a constrained kinematic chain, and is a mechanical device that has the purpose of transferring motion and/or force from a source to an output. A linkage consists of links (or bars), generally considered rigid, which are connected by joints, such as pin Cor revolute) or prismatic joints, to form open or closed chains (or loops). Such kinematic chains, with at least one link fixed, become mechanisms if at least two other links remain mobility, or structures if no mobility remains. In other words, a mechanism permits relative motion between its "rigid links"; a structure does not. Since linkages make simple mechanisms and can be designed to perform complex tasks, such as nonlinear motion and force transmission they will receive much attention in mechanism study.
Mechanisms are used in a great variety of machines and devices. The simplest closed-loop linkage is the four-bar linkage, which has three moving links (plus one fixed link) and four pin joints. The link that is connected to the power source or prime mover and has one moving pivot and one ground pivot is called the input link. The output link connects another moving pivot to another ground pivot. The coupler or floating link connected the two moving pivots, thereby "coupling" the input to the output link.
The four-bar linkage has some special configurations created by making one or more links infinite in length. The slider-crank (or crank and slider) mechanism is a four-bar chain with a slider replacing an infinitely long output link. The internal combustion engine is built based on this mechanism. Other forms of four-link mechanisms exist in which a slider is guided on a moving link rather than on a fixed link. These are called inversions of the slider-crank, produced when another link (the crank, coupler, or slider) is fixed link.
Although the four-bar linkage and slider-crank mechanism are very useful and found in thousands of applications, we can see that these linkages have limited performance level. Linkages with more members are often used in more demanding circumstances. However it is often difficult to visualize the movement of a multiloop linkage, especially when other components appear in the same diagram. The first step in the motion analyses of more complicated mechanisms is to sketch the equivalent kinematic or skeleton diagram. The skeleton diagram serves a purpose similar to that of the electrical schematic or circuit diagram .
Organization movement analysis second step: Draws a graphic chart, is must determine the organization the number of degrees of freedom. Based on degree of freedom, but Italy refers needs certain independent inputs the movement number, by determined organization all components are opposite in the ground position. The people have thousands of different types conceivably the link motion gear. You may imagine a bag containing massive link motion gear the component: Two pole groups, three pole groups, four pole groups and so on, as well as components, rotation, motion, cam follower, gear, tooth chain, chain wheel, leather belt, belt pulley and so on. (Sphere movement, screw vice-as well as the permission three dimensional relative motion other connections not yet includes, here, discusses in parallel planes merely plane motion). Moreover you conceivable put these components various types link motion gear possibility which forms in the same place. How exists helps the people to control forms these organizations the rule? In fact, the majority organization duty is requests a sole input to transmit to a sole output. Therefore the single degree of freedom organization uses most one kind of organization type. For example, namely may see by the intuition: Four pole organizations are a single degree of freedom link motion gear.
The picture motion diagram and the determination organization degree of freedom process, is the movement analysis and the synthesis process first stage. In the movement analysis, adds on its characteristic according to the organization geometry shape which possibly knew (for example input angle, speed, angle acceleration and so on) studies the determination concrete organization. On the other hand, the movement synthesis is designs an organization to complete the duty process which an institute requests. In this, chooses the new organization the type and the size is a movement synthesis part. Conceives the relative motion ability, can guess the reason that designs an organization the reason and makes the improvement to a concrete design ability is like this a successful organization scientist's symbol. Although these abilities come from the congenital creativity, however more is because has grasped the technology which enhances from the practice.
1.1The movement analysis:
simple one of most useful organizations is four pole organizations. In on following elaboration majority of content centralism discussion link motion gear, but this procedure is also suitable for the more complex link motion gear.
We already knew four pole organizations have a degree of freedom. About four pole organizations, has the useful more contents which must know? Indeed is some! These pull the Xiao husband criterion including the standard, the transformation concept, the blind spot position (divergence point), branch office, transmission angle, with theirs movement characteristic, including position, speed and acceleration.
Four pole organizations may have one kind of being called as crank rocker organization form, one kind of double rocking lever organization, one kind of double crank (tension bar) does the organization, which one form send in is called as the organization, is decided in two pole movement scopes which (fixed component) connects with the rack. The crank rocker organization input component, the crank may revolve through 360° and the continuous rotation, but outputs the component to make the undulation merely (i.e. swing member). As an exceptional case, in the parallel four pole organization, inputs the pole the length to be equal to outputs the pole the length, the go-between length and the fixed link (rack) length, also is equal. Its input and the output all may make the complete alternation rotation or transform the being called as antiparallel quadrangle organization the overlapping structure. The standard pulls the Xiao husband criterion (theorem) to indicate that,If in four pole organizations, between two poles can do willfully relatively rotates continuously, that, its longest pole length is smaller than sum of with the shortest pole length or is equal to sum of the other two pole length.
Should pay attention: The same four pole organization, may have the different form, which pole is this decided in was stipulated (i.e. makes fixed link) as the rack. The movement transformation process is in the fixed organization transmission chain different member has the different organization rate process. Besides has about the component rotation scope knowledge, but also must have how causes the organization before the manufacture on energy “the revolution” the good measure, that will be very useful. Hardenbergh (Hartenberg) speaks of: “The revolution” is terminology, its significance passes to outputs the component the movement validity. It meant the revolution is steady, in which can in output in the component to have a strength or the torque biggest force component is effective. Not only although the final output strength or the torque are the connecting rod geometric figure functions, moreover also is generally the power or the force of inertia result, that is frequently big to like static strength several times. In order to analyze the idling or in order to easy to obtain how can cause any organization “the revolution” the index, the transmission angle concept is extremely useful. In organization movement period, the transmission angle value is changing. The transmission angle 0° may occur in the special position. Will output the pole but in this special position the movement with not to exert inputs on the pole the strength many to have nothing to do with greatly. In fact, as a result of the movement vice-friction influence, the general basis practical experience, with the transmission angle planning board which is bigger than the rating. The weight link motion gear transmission movement ability matrix foundation definition already studied. A determining factor value (it includes regarding some assigns organization graph, position output movement variable to input variable derivative) is a this link motion gear in concrete position mobility criterion.
If the organization has a degree of freedom (e.g. four pole organizations), then stipulated a location parameter, if the input angle, completely determined this organization stops position (neglect branch office's possibility). We may study one about four pole organization component absolute angular position analysis expression. When analyzes certain positions and (or) certain different organization time, this will be must be much more useful than the geometric figure analysis program, because this expression will cause the automated computation easy to program. The realization organization speed analysis relative velocity law is the speed polygon is one of several effective methods. This end (goes against) the spot to represent on the organization all spots, has the zero speed. From this the line which stipples respectively to the speed polygon in is representing the absolute speed which this organization photograph well should select respectively. In a line connection speed polygon random two points represents is taking on this organization two corresponding spot relative velocity.
Other method is the instantaneous center law, namely the instantaneous center law, this method is extremely useful moreover is frequently when the complex link motion gear analysis quick method. The instantaneous center is a spot, this spot in that flash, on between the organization two components does not have the relative motion. In order to discover known organization certain instantaneous centers the position, Kennedy the (Kennedy) three center theories extremely are useful. It is said that,Each other relative motion three object three instantaneous centers are surely in a straight line.
The organization various components acceleration is makes one be interested, because it affects the force of inertia, subsequently affects the machine part the stress, the bearing load, the vibration and the noise. Because the final goal is the machine and the organization force of inertia analysis, the all acceleration various components all should the disposable picture - - in the organization fixed component inertial coordinate system express in the identical coordinate system.
Should pay attention: Is opposite in rotates on the vice-rotation rigid body an acceleration component usually to have two fixedly. A force component direction cuts in this path, its direction is same with this object angle acceleration direction, and is called the tangential acceleration. Its existence is completely because the angular speed rate of change causes.
Another component, always aims at the object the center of rotation, is called the standard the centripetal acceleration, because this component the velocity vector direction has the change to exist. The movement comprehensive
Ganization is forms many mechanisms the basic geometry structural units, these mechanisms including automatic packaging, printer, mechanical toy, textile machinery and other machineries and so on. The typical organization must design causes the movement which the rigid component relative datum component produces hoped. The organization movement design is the movement synthesis, first step frequently designs the entire machine first. When consideration stress, must ask dynamics aspect question, the bearing load, the stress, the lubrication and so on the similar question, but the major problem is the machine structure question..
The movement scientist defines the kinematics as “the development facility movement and the foundation organization method”. This definition first part involves the kinematic analysis. The known organization, its constitution state of motion determined by the kinematic analysis. The narration movement analysis duty contains the organization between the main dimension, the component links mutually with the input movement technical characteristic or the actuation method. The goal is must discover the displacement, the speed, the acceleration, the impact or the beat (two step accelerations), with various components higher order acceleration which possibly occurs as well as describes the diameter mark and the movement which realizes by certain components. The definition second part of available following two aspect explained :
1. research produces with the aid of the organization assigns the movement the method.
2. research construction to be able to produce assigns the motion the method, but in two plans, the movement is assigns the organization is the foundation. This is the movement synthesis essence. Such movement synthesis involves to for assigns the performance the organization system design. The movement synthesis aspect may sum up as following two kinds:
1. types are comprehensive. The stipulation requests the performance, how is one kind of type organization appropriate? (Tooth gear train, link motion gear? Cam gear?)How many components but should the organization have? How many degrees of freedom needs? How outline structure is hoped? . About the member number and the degree of freedom consideration was usually considered is in the type synthesis is been called as for a quantity synthesis branch domain.
2. sizes are comprehensive. The movement synthesis second predominant type is the best method which determined through the goal law. The size synthesis attempts to determine the organization the important size and the starting position, this organization is conceives beforehand for the realization stipulation duty and the anticipated performance.
Of the so-called important size meanings are refer about two poles, three poles and so on between the length or the pole are away from, angle between number of articles and spool thread, cam contour size, cam follower diameter, eccentricity, gear quota and so on. Expected the organization type possibly is the crank slide organization, four pole organizations, the tape reel from the moving parts cam gear, but or is non-has some kind of structure shape more complex link motion gear because by the analysis situs method which the inferior analytic method determined. Is comprehensive regarding the movement, in the convention has three duties: Function production, path production and movement production..
Inputs and outputs the component in the function production organization the rotation or the migration must be the interdependence. Regarding arbitrary function y=f(x), a movement synthesis duty possibly is designs a link motion gear to cause the input and the output establishes the relations in order to cause in the xo
收藏