喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,所見即所得,CAD圖紙均為高清圖可自行編輯,文檔WORD都可以自己編輯的哦,有疑問咨詢QQ:1064457796,,,課題后的【XX系列】為整理分類用,與內容無關,請忽視
摘 要
本文總結了國內外仿生蜘蛛機器人的背景和目標,仿生蜘蛛機器人的研究成果和簡單介紹。介紹了蜘蛛的運動原理和設計的大概思路。通過研究蜘蛛機器人的六足仿生的運動,這種設計已確定腳結構,使用3自由度的分析實現向前運動,經過計算和模擬確定了方案的可行性。通過計算選擇了電機的種類和型號。完成了各個零件型號以及種類的選擇。構想的組件和裝配仿生蜘蛛機器人以及相關部件的檢查,確保機械設計的可行性,都包含在總設計。
關鍵詞:仿生;機器人;機構
ABSTRACT
Bionic spider robots at home and abroad are reviewed in this paper.the background and target, bionic spider research results and a brief introduction of the robot.Introduced the movement principle of spider and general idea of design.Through the study of the movement of the hexapod bionic robot spider, the design has been determined foot structure, use 3 degrees of freedom analysis to realize the forward movement, through the calculation and simulation to determine the feasibility of the scheme.By calculating the types and models of the motor.Completed the selection of models and various parts of the.Idea of components and assembly, inspection of bionic robot spider and related components to ensure the feasibility of the mechanical design, are included in the total design.
KEYWORDS:bionics ;hexapod robot ;machinery
目 錄
內容摘要................................................................
I
Abstract.................................................................
II
1 緒論.................................................................
1
1.1 論文的研究目的和意義................................................
1
1.2 研究背景.............................................................
1
1.3 國內外研究成果.......................................................
2
1.3.1 國外研究成果.......................................................
2
1.3.2 國內研究成果.......................................................
3
2 設計思路.............................................................
4
2.1 生物蜘蛛的生理結構...................................................
4
2.2 仿生蜘蛛機器人的研究方法及思路.......................................
4
3 整體設計方案........................................................
6
3.1 工作原理分析.........................................................
6
3.1.1 三角步態(tài)原理分析...................................................
6
3.1.2 機器人走動步態(tài)分析.................................................
6
3.2 機器人機構總體設計...................................................
6
3.3 電機的選擇...........................................................
9
3.4 舵機驅動原理.........................................................
12
4 零件的設計...........................................................
14
4.1 軀干的設計..........................................................
14
4.2 基節(jié)設計.............................................................
14
4.3 關節(jié)蓋的設計.........................................................
15
4.4 脛節(jié)片的設計.........................................................
16
4.5 足的設計.............................................................
17
4.6 連接桿的設計.........................................................
17
4.7 固定片的設計.........................................................
18
5 仿真圖文詳解.........................................................
20
5.1 Pro/E軟件簡介........................................................
20
5.2 裝配體及運動步驟.....................................................
20
6 結論.................................................................
25
參考文獻................................................................
26
附錄:開題報告...........................................................
27
致謝....................................................................
33
外文翻譯
仿人形機器人:一種新型工具
Bryan Adams,Cynthia Breazeal,Rodney A.Brooks,and Brian Scassellati著
陸靜金 譯
除了傳統的機器人,仿人形機器人可以用來探索人類智慧的理論。作者討論該項目主要是用來開發(fā)具有愛好和交流行為的機器人。
在1923年他發(fā)表的論文R.U.R:Rossum型通用機器人,Karel Capek型沖壓機器人是由Czech型機器人發(fā)展而來。僅因在過于單調乏味或危險的環(huán)境下工作,現在的機器人用于裝配線上的焊接部分,檢查核電站,探索其它行星。一般來說,機器人之間的靈活性與人類相比還相差甚遠。
仿人形機器人實驗室正在努力開發(fā)機器人。開發(fā)人型機器人是一項艱巨的任務,需要結合工程機械、電氣、軟件工程;計算機體系結構和實時控制。1993年,我們開始了一個項目,旨在構建仿人形機器人用于探索人類智慧的理論。除了相關工程,計算機體系結構、實時控制問題,我們已經解決的問題,特別是虛擬集成系統:我們應該用何種類型的傳感器,機器人應如何解釋數據?在環(huán)境因素下,機器人是如何實現特定任務?如何適應不斷變化的體制條件并學習新的任務?每個仿人形機器人實驗室必須處理許多相同的馬達控制、感知、機器學習問題。
研究方法的原則
真正的分歧來自截然不同群體的基本假設和研究議程。在麻省理工實驗室,三項基本原則指導我們的研究。
● 設計仿人形機器人的自動安全動作,沒有人控制或監(jiān)督,在自然工作環(huán)境下能與人互動。我們不為他們解決具體機器人的需求(如在焊接機器人裝配線)。我們的目標是在許多不同的環(huán)境下所構建的機器人的功能基本上一致。
● 社會機器人必須能夠像人類一樣察覺并理解,每天都能思考,如頭部點頭或眼睛眨眼,使他們可以和任何未經專門訓練或指示有所互動。他們還能夠運用這些條件進行交流。這些能力的必要性,影響機器人控制系統設計和物理體現。
● 機器人提供了一個獨特的測試工具是從認知科學和發(fā)展心理學而來。我們希望不僅能夠創(chuàng)造生物機器人的啟發(fā)能力,而且通過形成和完善,幫助我們了解這些能力。
運用真正的理論系統,我們通過測試假設能更容易判斷他們的內容和范圍。
在人類環(huán)境中的自動機器人
不同于工業(yè)機器人,在一個固定的環(huán)境對一個小范圍的操作,我國機器人必須在各種環(huán)境條件、各種不同的任務下靈活操作。因為我們需要的系統不受人類控制,我們必須及時發(fā)現問題,譬如動作的連貫性和命令的執(zhí)行性。這種主動權經常表現在一個特殊任務和一個更加寬廣的范圍。但是,我們相信,建立自治系統提供具體任務的強壯和靈活性系統可能從未達到。
要求我們的機器人能夠在一個喧鬧、凌亂的、交通堵塞的工作區(qū)自行操作,并且能夠應付自然環(huán)境的一個復雜系統。雖然這些環(huán)境不會像那些星球探險家面孔那樣敵對,他們也不為專門制作機器人。除了作為人類安全的互動與認識和應對社會環(huán)境,我們的機器人必須能學會從人示范。
這反映出我國實施機器人研究的原則。例如,機器人(見圖1)從上部軀干到一條胳膊和基本視覺系統共有14個自由度。在這一次的更新,我們實行多式聯運系統,譬如為了接觸一個視覺目標。現在,機器人有六個自由度胳膊,七個自由度頭,三維特色軀干聯接和更加富有的知覺系統。每只眼睛有一臺照相機以一個狹窄的視野為高分辨率視覺和以一個寬視野為周邊視覺,給機器人一雙眼,可變分辨率鑒于其環(huán)境。一個慣性系統讓機器人能協調馬達,反應更加可靠。應變儀在各胳膊聯接處測量出扭矩值,電位器測量位置,二個話筒提供聽覺輸入,和各種各樣的極限開關、壓力傳感器和熱量傳感器提供其它的輸入。
圖1.我們在上面所講的機器人,有我們具體地設計的22個自由度與人的運動越緊密越好。
機器人的原則,也體現了我們兩個層次的互動安全。首先,我們在胳膊上連接了馬達對聯接處給以扭轉力。除提供傳動箱保護和消滅高頻率碰撞振動之外、彈簧提供了安全措施,為人與胳膊相處融洽。這樣的控制讓胳膊從某姿勢順利地向擺姿勢以相對緩慢的命令執(zhí)行,和讓他們偏轉在障礙方式外面代替危險地強迫通過他們,允許安全和自然互作用。(在這個問題上,辛西亞和她的同事進行了討論,其它機器人的互作用更好,把社會的限制看成在生命的視覺上)。
人類與社會互動
因為我們的機器人必須在人類環(huán)境中工作,我們的研究在社會中有著很重要的影響。建立社會技能不僅成為我國機器人提供一個自然機會人機互動機制,為引導更復雜的行為。人體模型機器人可以兼任輔導員,幫助輔導機器人行為。我們當前的工作重點是四個社會互動方面:通過社會環(huán)境達到一個有感情的模型、共同找出注意點,通過聲音來獲取信息,通過模仿來獲取知識。
通過社會環(huán)境制造一個有感情的模型。社會智能機器人模型的一個關鍵組成部分是一個感情模型,理解并操縱在某環(huán)境中。機器人學習這種模型需要兩個技能。一是社會的投入學到能力,了解相關線索提供關于可能幫助了解的他們的精神狀態(tài)及指定的相互作用的動態(tài)理解。二是能夠操縱環(huán)境來表達自己的情緒,這樣就會影響社會相互作用的動力學。舉例來說,如果一個機器人觀察一位輔導員展示任務,但是輔導員的迅速走動,隨后機器人可能顯示一個迷茫的表示。輔導員把這一信號放慢并自然地解釋這一顯示。這樣,機器人可以影響語言的速度和質量?,F行機械學內嵌一個動力模型包含這些交換類型(見圖2)。
圖2.通用控制架構下發(fā)展我們的兩用機器人。每個大系統下,我們列出了組成的名單,我們都已實行或正在發(fā)展。同時,許多技能表現在這些單元間的聯系,如學習視覺技巧和基于調空激勵狀態(tài)。在這里我們不列出這些各自的系統單獨學習技術整體部分的機器。
通過觀察確定注意點。一個機器人的其它重要要求依照由注視表達參加社會情況是了解共有的注意基本方向,指向,和其他姿態(tài)。一個困難在使機器學會從輔導員保證機器并且輔導員兩個出席同樣對象了解在哪里新信息應該是應用的。換句話說,學生必須了解這部分零件相關的內容。學生利用各種線索從人類社會的教練指導他們注意;語言限定(如這個或那個),姿勢線索(如眼睛或指向方向) 姿勢和線索(如接近度)都可以向特定對象直接關懷和解決這個問題。我們實施可能認可社會暗示的系統那與共有的注意關系并且那可能反應適當地根據社會環(huán)境。
通過聲音來獲取信息。在許多場合參加聲樂交流互動很重要。其它機器人聽覺識別系統集中在小部分的命令詞匯上。我們的研究重點是了解更基本的聲音樣式。我們正在實施一個聽覺系統,讓我們的機器人肯承認聲樂、禁止和注意標志。這樣,機器人會得到社會反饋,自然有它的動作。韻律演講模式(含瀝青、節(jié)奏、聲音口氣)可能普及;嬰兒認知能力表現稱贊,禁止和注意標志在陌生的語言。
通過模仿來獲取知識。通過仿制人類掌握新技能、新目標。也可以模仿自然機制機器人學習新技能和目標,考慮這個例子:
機器人在觀測一個人打開一個玻璃瓶。一個人靠近機器人,在機器人旁邊有張放有罐子的桌子。人摩擦雙手,然后自己去開罐子上的蓋子。他一手抓住玻璃瓶及一手抓住瓶蓋向逆時針轉動。當他打開罐子時,他停了一下抹了下眉心,然后看機器人在做什么。接著,他恢復了原樣。機器人然后試圖模仿行動。
雖然機器人學習這種情況引起一些問題,但可以根據這種相互作用,而建立一個系統。這部分是重要的仿效行動(如把蓋子逆時針)和不重要的仿效行動(如你擦眉),一旦行動已經完成,如何評價機器人的表演?如何從這個機器人抽象的知識和經驗運用到類似的情況?這些問題,不僅需要知識,而且需要社會環(huán)境。
構建和測試人類智力理論
我們的研究,我們汲取靈感不僅來自生物學模型的設計和軟件結構,而且我們也試圖利用這些模型測試來驗證原設想。就像電腦被用來模擬神經網模型,從神經科學探索到完善,我們可以用仿人機器人來驗證認知科學、行為科學的模式。我們用了四個典型的生物學研究事例。
能夠自學并很好的領悟。嬰兒經過一個階段的學習,利用手眼協調我們推行了一個視覺系統達到以下目標,這有別于標準模型運動生物操縱技術,無論是利用機器人或環(huán)境,這個系統是完全自我訓練并沒有固定的模式。
用類似的進程觀察嬰兒,我們首先在機器人視覺訓練上安置有趣的物體。機器人移動它的眼睛獲取目標,然后扭轉了它的頭和脖子面對目標。我們當時在達成此訓練目標的機器人之間再插一套姿勢,模仿原脊椎神經的反應后辨認老鼠和青蛙,使機器人視覺有效的達到目的。
幾個有趣的動作造成這一結果。從計算機科學的角度看,兩步計算訓練過程簡單。集中學習培訓兩個簡單對象可連鎖在一起產生的預期行為。此外,在無監(jiān)督條件下,機器人學會了兩者之間映射(在眼部位置和原始姿勢之間)。這是可能的,因為映射和眼睛位置定位誤差,提供了可靠的信號(圖3)。從生物學的觀點,這項實施揭露了一個局限的姿勢原始理論。雖然插補模式描述在初期工作姿勢之間,沒有機械來初步推斷其他工作期間的姿態(tài)。
圖3.為了達到視覺效果。機器人觀察它自己的胳膊運動,然后使用同樣的途徑接受簡單指示,而導致了它可能接受到錯誤信號。
音律節(jié)奏。是指脊髓神經元模型產生的節(jié)奏性行動。我們運用這個模型引起胳膊反復運動,譬如把曲柄與模擬神經的各胳膊聯合起來,如圖4展示。本身的擺動器采用聯合輸入,不斷調節(jié)平衡點,并聯合虛擬彈簧。擺動器作用在動力學上表現為各胳膊的連接,并在物理動力學上確定為整體胳膊運動。
圖4.神經系統的擺動器。擺動器附有各個部位的聯接,包括一對相互禁止的神經元。黑色圓圈代表禁止連接;打開白色圈子使它處于工作狀態(tài)。
這項措施明確了模型在現實的作用,在工程學上也有一定的作用。首先,擺動器不要求胳膊執(zhí)行動態(tài)模型系統。并要求各個胳膊處在的環(huán)境得到驗證。其次,擺動器能夠在廣泛的范圍內接受任務,譬如轉動曲柄,鋸木塊和搖擺擺錘。在控制系統的配置下,一切沒有任何改變。第三,該系統是非常防干擾的。我們不僅可以阻止它,并讓它在短時期內開始工作(通常不到一個周期)。系統將會迅速彌補變化。最后,投入的擺動器可以來自其他方式,其中一個例子是用聽覺,讓機器人隨著人類鼓手一起打鼓。
視覺搜索和密切觀察。我們采用了杰里米?沃爾夫的人類視覺搜索和觀察模式,結合低層次視覺特征作為探測器,如面孔探測器、外貌突出、深入分割與動做的行為模式(見圖5)。這個注意系統對物體所固有的凸極性環(huán)境下有選擇性地讓機器人直接計算資源和試探性行為。
圖5.注意系統概況。各種視覺特征探測器(彩色、行動、面孔探測器)的習慣相結合產生的功能。 注意過程控制和影響眼睛的機器人的內部狀態(tài)和行為動機。我們獲取了一個在這期間關于行為的試驗。
實施這項任務已經讓我們知道無論是在由上而下的基礎研究和機會利用低水平特點的研究。例如,如果探索與描寫機器人,增加動力系統的重量面對探測器的特點。這就產生了傾向于面對一個實體。但是,如果出現了一個非常有趣的無實體對象,面向低水平性能足以吸引機器人的注意力。我們將根據示范凸極性線索的焦點來關注這個模型。我們還可以設計一個簡單的機械將影響到沃爾夫的習慣模式,以此來刺激機器人接收習慣性的注意力。
共用關心并專注于理論。在兒童的發(fā)展階段能夠有信仰、期望和獨立的悟性是一個重要里程碑,另一個人有什么能力可以看到,另一人維護假的信仰,喜歡游戲的和不喜歡這項娛樂的人的不同之處都屬于這個發(fā)展鏈。此外,能夠認識到自己,能夠認知自己的感性經驗,而參與技能也可以發(fā)揮創(chuàng)意及想象力,因此在發(fā)育提前。我們正在實施一項示范社會技能發(fā)展在正常發(fā)育與孤獨癥及發(fā)育障礙者之間。我們設計的系統能夠探測臉,眼睛視力并檢測工作環(huán)境和眼睛接觸。
雖然這項工作仍在初級階段,我們相信,在實施一個研究中的機器人模型,將詳細的處理模型,使用人類學科來維持同樣的測試環(huán)境和方法。研究員能非常熟悉模擬系統參數當他們評價系統模型參數在不同環(huán)境條件的每一步發(fā)展都有效果。由于機器人模型進入和人一樣主題的環(huán)境,研究者可以用類似的評價標準(無論從主觀觀察或測量反應時間或測量精度等)。同時,研究人員可以通過檢測對機器人受到的潛在危險、高昂代價或不道德的行為傳達給人類。
雖然科學研究通常是因為靈感而受到科幻小說的贊揚,但是因為人工智能和機器人技術的存在,可以使小說中的情景得以實現。但是,在過去10年間,仿人機器人在許多研究團體、會議、專題上成為焦點。雖然超出科幻小說作家的想象可能很難,我們的工作也表明未來的一種可能。仿人形機器人能夠用人類的方式與人溝通,人們會覺得這是正常和自然的。與此同時,通過建立這些系統,我們將繼續(xù)了解更多關于我們人類自身的智力。
鳴謝
這項工作得到了ONR和DARPA的支持,DARPA在MURI N00014-95-1-0600和DABT 63-99-1-0012.下簽定了合同。
參考資料
[1] R.A. Brooks et al., Alternative Essences of Intelligence, Proc. 15th Nat l Conf. Artificial Intelligence (AAAI 98) and 10th Conf. Innovative Applications of Artificial Intelligence (IAAI 98), AAAI Press, Menlo Park, Calif., 1998,pp. 961—968.
[2] R.A. Brooks et al., The Cog Project: Building a Humanoid Robot, Computation for Metaphors, Analogy and Agents, C. Nehaniv, ed., Springer Lecture Notes in Artificial Intelligence, Vol. 1562, Springer-Verlag, Berlin, 1998.
[3] G.A. Pratt and M.M. Williamson, Series Elastic Actuators, Proc. IEEE/RSJ Int l Conf. Intelligent Robots and Systems (IROS 95), Vol. 1, IEEE Computer Soc. Press, Los Alamitos, Calif., 1995, pp. 399—406.
[4] C. Breazeal and B. Scassellati, Challenges in Building Robot s That Imitate People, to be published in Imitation In Animals and Artifacts, K. Dautenhahn and C. Nehaniv, eds., MIT Press, Cambridge, Mass., 2000.
[5] A. Diamond, Developmental Time Course in Human Infants and Infant Monkeys, and the Neural Bases of Inhibitory Control in Reaching, The Development and Neural Bases of Higher Cognitive Functions, New York Academy of Sciences, New York, 1990, pp. 637—676.
[6] M.J. Marjanovic, B. Scassellati, and M.M. Williamson, Self-Taught Visually Guided Pointing for a Humanoid Robot, From Animals to Animats 4: Proc. Fourth Int l Conf. Simulation of Adaptive Behavior (SAB 96), MIT Press, Cambridge, Mass, 1996, pp. 35—44.
[7] S.F. Giszter, F.A. Mussa-Ivaldi, and E. Bizzi, Convergent Force Fields Organized in the Frog s Sp inal Cord, J.Neuroscience, Vol. 13, No. 2, February 1993, pp. 467—491.
[8] K. Matsuoka, Sustained Oscillations Generated by Mutually Inhibiting Neurons with Adaption, Biological Cybernetics, Vol. 52, 1985, pp. 367-376.
[9] M. Williamson, Robot Arm Control Exploiting Natural Dynamics, doctoral thesis, Massachusetts Institute of Technology, Dept. Electrical Eng. and Computer Science, Cambridge, Mass., 1999.
[10] J. Wolfe, Guided Search 2.0: A Revised Model of Visual Search, Psychonomic Bull. and Rev., Vol. 1, No. 2, June 1994, pp. 202—238.
[11] C. Breazeal and B. Scassellati, A Context-Dependent Attention System for a Social Robot, Proc. 16th Int l Joint Conf. Artificial Intelligence (IJCAI 99), Morgan Kaufmann, San Francisco, 1999, pp. 1146—1153.
8
1緒論
1.1論文的研究目的和意義
在我國仿生機器人可以幫助完成各種人類身體不能達到或是過于危險的任務,例如深海采集資源和外太空探測,甚至是軍事行業(yè)的部分應用。
隨著計算機、網絡、機械電子、信息、自動化等技術的飛速發(fā)展,仿生機器人的研究進入了一個嶄新的階段。同時,太空資源,海洋資源,甚至部分陸地資源的開發(fā)和利用為仿生機器人提供了廣闊的發(fā)展空間。
仿生機器人的制造和開發(fā)已經成為當今社會不可阻擋的一股潮流,仿生機器人可以做到各種人類做不到的事,例如深海中人類很難出倉行動,這時便可以利用機器人做到人類想做卻做不到的事。
隨著仿生機器人在工業(yè)軍事等領域的廣泛應用以及不可替代性,機器人學已經逐漸形成,并且獲得各行各業(yè)的人們關注和參與。機器人學是一個綜合性很強的學科,它涉及控制技術、傳感器技術、計算機系統、人工智能、傳動技術、材料選用、力學等多種知識。
現在設計仿生移動機器人,能夠為以后進入機器人設計行業(yè)大俠良好的基礎。
1.2研究背景
現代仿生機器人基本能按人的指令完成各種比較復雜的工作,如深海探測、作戰(zhàn)、偵察、搜集情報、搶險、服務等工作,模擬完成人類不能或不愿完成的任務,不僅能自主完成工作,而且能與人共同協作完成任務或在人的指導下完成任務,在不同領域有著廣泛的應用[1]。
在未來的軍事智能移動機器人中,還會有智能戰(zhàn)斗機器人、智能偵察機器人、智能警戒機器人、智能工兵機器人、智能運輸機器人等等,成為國防裝備中新的亮點[2]。
機器人設計有許多技術。這些關鍵技術主要有以下幾個方面:;路徑規(guī)劃技術,最優(yōu)路徑規(guī)劃就是依據某個或某些優(yōu)化準則,在機器人工作空間中找到一條從起始狀態(tài)到目標狀態(tài)、可以避開障礙物的最優(yōu)路徑;機器人視覺技術,機器人視覺系統的工作包括圖像的獲取、圖像的處理和分析、輸出和顯示,核心任務是特征提取、圖像分割和圖像辨識;智能控制技術,智能控制方法提高了機器人的速度及精度;人機接口技術,人機接口技術是研究如何使人方便自然地與計算機交流[3]。
1.3國內外研究成果
歐洲各國在智能移動機器人的研究和應用方面在世界上處于公認的領先地位[4]。中國起步較晚,而后進入了大力發(fā)展的時期,以期以機器人為媒介物推動整個制造業(yè)的改變,推動整個高技術產業(yè)的壯大[5]。
1.3.1國外研究成果
1990年,美國卡內基-梅隆大學研制出用于外星探測的六足步行機器人AMBLER[6]。1993年,美國卡內基-梅隆大學開發(fā)出有纜的八足步行機器人DANTE[7]。1996~2000年,美國羅克威爾公司在DARPA資助下,研制自主水下步行機ALUV[8]。
圖1 AMBLER 圖2DANTE-II
圖3ALUV步行機
1.3.2國內研究成果
1991年,上海交通大學馬培蓀等研制出JTUWM系列四足步行機器人[9]。2000年,上海交通大學馬培蓀等對第一代形狀記憶合金SMA驅動的微型六足機器人進行改進,開發(fā)出具有全方位運動能力的微型雙三足步行機器人MDTWR[10]。2002年,上海交通大學的顏國正、徐小云等進行微型六足仿生機器人的研究[11]。
圖4微型雙三足步行機器人MDTWR 圖5微型六足仿生機器人
2設計思路
2.1生物蜘蛛的生理結構分析
生物蜘蛛,如圖所示,是對節(jié)肢動物門(Arthropoda)蛛形綱(Arachnida)蜘蛛目(Araneida或Araneae)所有種的通稱。
圖6 生物蜘蛛
仿生式蜘蛛機器人,顧名思義,我們借鑒自然界當中昆蟲的運動原理。
腳是昆蟲的運動器官。昆蟲有3步行,在胸部,胸部和胸部都有一雙,我們反過來叫前面的腳,腳和背部的腳。每只腳髖,旋轉,股骨,脛骨,瞼板和前大數。髖是一天的基礎,比短。旋轉是沒有活動通常與腿部分緊密相連。腿部分最長最厚部分。第四季度叫做脛骨,往往是又細又長,一排排的荊棘。第五節(jié)叫做大數,一般由2 - 5節(jié)和部分:為了方便走路。小結束還有兩個堅硬和鋒利的爪子,它可以用來把握對象。步行是一組三條腿,前后肢的一邊和另一邊的腳set.Thus托架結構,形成了一個三角形的三條腿在地上,往后推,另三條腿舉起來取代。前足后固定對象在它的爪子把昆蟲的身體向前,足以支持和提高身體的一邊,腳后促進蟲體之前,同時使蝸桿轉動。
這種運動方式使昆蟲可以在什么時候停止都可以,由因為中心遺址是不變的。還有一部分昆蟲不用全部的腿走路。他們的一些腿有了其他功能,產生了變化。行走就主要靠中和后足來完成。比如說刀螂。兩只前腿不會用來走路。而是自己的武器、依靠剩下的四條腿運動
參考上面的昆蟲腳結構,我想出了一個簡單的方式來表達。一只腳兩個關節(jié)的活動,聯合使用控制型轉變,另一個聯合使用偏擺,讓腳可以提高,作為一種上下。
2.2仿生蜘蛛機器人的研究方法及思路
決定這次研究的仿生蜘蛛機器人為六條腿的結構,要想完成設計首先得完成機構的設計。之后才可以進行系統的設計。整機機械結構、自由度、驅動方式,傳動機構,都會影響機器人的性能。而且,仿設計出來的機器人機構不僅得滿足技術條件。而且得滿足經濟條件。必須在滿足機器人的預期技術指標的條件下,考慮用合理用材、便捷制造安裝、價格低廉和可靠性高等問題。
仿生蜘蛛機器人機制包括身體和腿兩部分、,首先得決定腿的數量。以及其他數據。現有計算多組機器人包括三、四、六尺、八尺以上,腳的數量大,重載和慢鏡頭,和青年的數量似乎更靈活的運動。數選擇的因素主要包括:穩(wěn)定、節(jié)能、冗余、聯合控制性能的要求,生產成本,質量,復雜的傳感器和可能的步態(tài),等等,腿配置指的是腳的行走機器人相對于身體的位置和姿態(tài)的安排,確定分布形式,還需要考慮一些細節(jié),比如腿在主平面幾何配置和相對彎曲腿的方向桿,等等。此次設計腿的分布如圖1所示。
圖 7仿生蜘蛛機器人腿的分布示意圖
綜合足的數量等因素,此次設計的行走步態(tài)決定用三角步態(tài),這也是六足機器人步行方式通常采用的。三角步態(tài)中,六足機器人身體的一側的前足和后足與另一側的中足共同組成一組。其他三條足組成另外一組。
38
3整體設計方案
3.1工作原理分析
六足步行機器人的步態(tài)是多樣的,其中三角步態(tài)是仿生蜘蛛機器人實現步行的典型步態(tài)。以下主要分析三角步態(tài)原理。
3.1.1三角步態(tài)原理分析
六條腿的昆蟲行走時,一般不是六足同時直線前進,是把三對足分成兩組,以三角形支架結構,互相交替前行。目前,大部分仿生蜘蛛機器人采用了仿昆蟲的結構,六條腿分布在身體的兩側,身體左面的前、后足及右面的中足為一組,右面的前、后足和左面的中足為另一組,分別組成兩個三角形支架,靠大腿前后劃動來實現支撐以及擺動過程,這就是最典型的三角步態(tài)行走方式。但是因為身體重心比較低,容易穩(wěn)定,所以這種行走方案可以得到廣泛運用
3.1.2機器人走動步態(tài)分析
項目設計總共用18個舵機實現步態(tài)。每條腿三個舵機,分別控制跟關節(jié)和膝關節(jié)以及踝關節(jié)的運動,兩個舵機安裝呈正交,構成垂直以及水平方向的自由度。因為腿具有水平和垂直平面的運動自由度,所以需要考慮利用三角步態(tài)來實現直線行走。分別給18個舵機編號(1-18),如下圖所示。
3.2機器人機構總體設計
六條腿的機器人六條腿走路運動過程中分為兩組,昆蟲的身體一側的前足和后腿在另一邊的腳作為一組,剩下的三條腿和一群。在運動的過程中,會有一組腿,一組腳,三個降落腿不僅使昆蟲的身體穩(wěn)定,擺動和驅動力,昆蟲身體能完成直線或旋轉運動。本設計使用三角步態(tài)六英尺六條腿的機器人分為兩組,1、3、5條腿作為一個群體,2,4,6為另一組腿。六條腿的機器人通過控制兩腿交替提高擺動,實現步行運動。從身體的角度提升每條腿是開鏈結構,等效串聯的手臂,同時在三條腿或六條腿和身體成分較為封閉鏈自由度并聯機構。步行機器人行走在正常情況下,胎停止支持腿與地面接觸有摩擦,可以簡化為點接觸,相當于3自由度球面副的機制,加上與關節(jié),膝蓋和腳踝(對于單自由度,每個關節(jié)旋轉),每條腿有6對單自由度運動。假設任何時候步行機器人的腿支撐階段數n,然后用n模型空間多環(huán)并聯機構分支機構,它的自由度可以計算下一個類型:
(1)
式中:p----運動副數,p=4n;
----第i個運動副具有的自由度數,=1(i=1~3n),=3(i=3n+1~4n),
L----獨立封閉環(huán)數,L=n-1;
----第i個獨立封閉環(huán)所具有的封閉約束條件數,=6;
----消極自由度數,=0;
和----分別為局部自由度數和重復約束數,。
將以上參數代入式(1),可得:
F=3n+3n-(n-1)6=6
由此可得到,不管步行機器人的幾條腿處于支撐相,不論是三足支撐還是六足支撐,整個機構都是具有六個自由度的空間多環(huán)的并聯機構,只是有時為三分支并聯機構,有時為六分支并聯機構。六足步行機是這樣行走,從機構學角度看就是三分支并聯機構,六分支并聯機構和串聯開鏈機構兩者之間不斷變的復合型機構。同時,上面的式子也說明,不管該步行機器人的步態(tài)和地面狀況怎樣,軀干在一定范圍內都可靈活的到達任意位置,而且呈現要求的姿態(tài)。
仿生蜘蛛機器人腿分布示意圖如圖3所示。
圖8仿生蜘蛛機器人腿分布示意圖
仿生機器人蜘蛛六腿機身的盤上均勻分布,根據設計要求:一條腿有三個自由度的運動,因此每條腿組裝三個電機實現三個轉動自由度。電機裝配位置腿和關節(jié),膝蓋和腳踝。機身連接到主板的基礎部分,關節(jié),膝蓋和腳踝,每個都有相應的自由度,以確保正常的運動。脛骨關節(jié)連接,以保證良好的能動性,六條腿的機器人腳后通常使用昆蟲腳設計的一部分,好的,優(yōu)越的實用性和良好的靈活性。腿交替來支持身體的質量在行走的過程中,和推動身體向前移動在負重條件,因此必須適應整個剛度和承載力的質量。項目設計的仿生機器人蜘蛛,三個自由度的腿在一個類似的機構,包括膝蓋和腳踝是由電機驅動和錐齒輪,為了使用簡單的機構來獲得更大的工作空間和靈活性。電機通過控制相應的關節(jié)運動使機器人具有多個自由度,可以實現機器人走在任何時候自由的領域。在結構上,以確保它可以更有效地模擬昆蟲走路的方式來完成相對復雜的運動。驅動系統在機器人仿生蜘蛛等效生物肌肉的作用,改變它,把腿關節(jié)機器人的姿態(tài)。驅動系統必須擁有足夠的功率對關節(jié)進行加、減速并帶動負載,而且自身必須輕便、經濟、精準、靈敏、可靠且便于維護六足機器人的腿生物結構示意圖4所示。
圖9仿生蜘蛛機器人腿的生物結構示意圖
圖10舵機安裝示意圖
(1)行走步態(tài)分析
由13,14,15,1,2,3,7,8,9,號舵機所控制的E,C,,A腿所處的狀態(tài)一直保持一致;同樣,4、5、6、10、11、12、16、17、18號所控制的B、D、F腿的狀態(tài)也保持一致。當一個三角形內的三條腿支撐時,另三條腿正在擺動。支撐的三條腿使身體前進,擺動的腿對身體沒有力以及位移作用,只使小腿向前運動,做好接下來支撐的準備。步態(tài)函數,的占空系數為0.5,支撐相還有擺動相經過調整,滿足平坦地形時行走步態(tài)要求以及穩(wěn)定裕量要求[7]。
(2)轉彎步態(tài)分析
項目設計的機器人使用原位將與一只腳為中心轉動,右旋轉運動過程如下:首先E,C,A,號腿先抬起,然后C,A號腿向前擺動,E腿保持不動。此時B、D、F腿支撐。然后A、C、E腿落地支撐,同時B、D、F腿抬起保持不動。最后A、C腿向后擺動。整個運動過程中B、D、E、F不做前后運動,只是上下運動。
3.3電機的選擇
選擇電機時需要考慮機器人地質量以及最大扭矩。必須要有機器人的腿的質量以及尺寸,通過查閱然后預算可以得出:上腿(股節(jié))有效長度是 34mm,中腿(脛節(jié))的有效長度是34mm,下腿(足)的有效長度是 90mm。上腿質量為 190 克,中腿為140克,下腿為 150 克。然后對腿部做受力分析,做出受力簡圖5如下
圖11 仿生蜘蛛機器人腿的受力簡圖
仿生蜘蛛機器人以地面做 xoy平面,仿生蜘蛛機器人地重心在 xoy平面上的投影為坐標原點O,z軸和機身垂直。
仿生蜘蛛機器人每條腿都會有3個自由度,每條腿都是由上腿和中腿以及下腿通過舵機連接形成。在本次設計中,上腿的長度是34mm,中腿地長度是34mm,下腿地長度為90mm。機體和上腿由A號舵機連接,上腿和中腿是B號舵機連接,中腿和下腿用C舵機連接。腿著地的時候,上腿和中腿間的夾角為135°,中腿與下腿間的夾角為135°,抬腿的時候,B舵機逆時針轉動30°。在仿生蜘蛛機器人行走的過程中,要避免腿與腿會碰到,所以腿擺動的時候需要選擇合適的角度,在本設計中運動控制的時候選擇的擺動角度為30°。
針對仿生蜘蛛機器人支撐腿的受力狀況,其虛位移平衡方程的分析如下:
首先用表示質點系的廣義坐標,即有
(2)
,,,,,,,,,則仿生仿生蜘蛛機器人步行足的廣義平衡方程為:
(3)
(4)
其中 M2、M3為膝關節(jié)和踝關節(jié)所需扭矩,l2、l3、 m2、 m3為脛節(jié)、足的長度和質量。
假設仿生蜘蛛機器人要按“三角步態(tài)”來行走,支撐相的三足均勻承受負荷,可以得到足的反力為:
(5)
仿生蜘蛛機器人在實際運動中,存在 的情況。據此,可推算出各關節(jié)所需的扭矩為:
(6)
(7)
當q2=90°,q2-q3=30°時,由公式得,關節(jié)需輸出扭矩最大值為:
(8)
(9)
計算得出,電機的最大輸出扭矩要大于1.58 Nm。
根據得到的數據;來選用的伺服馬達是TowPro的,型號是 SG303。主要技術參數如下:
轉速:0.23秒/30度。
力矩:1.8Nm。
尺寸:40.4mm×19.8mm×36mm。
重量:37.2g。
5V電源供電。
舵機的結構如圖6所示
圖12 舵機的內部結構圖
通過整體的設計確定了仿生蜘蛛機器人的基本結構,通過電機的選擇而確定仿生蜘蛛機器人的質量以及腿部的尺寸,為后面的零件設計做了充分準備。
3.4舵機驅動原理
仿生蜘蛛機器人采用電動驅動的方式進行驅動,驅動器采用微型直流角位移伺服電動機(舵機)
3.4.1舵機原理
舵機是一種擁有的簡單的結構的、集成化的直流的的伺服系統,它的內部結構由直流電的機和減速齒輪和電位計和的制電路組成??刂菩诺奶柧€提的的供一定脈寬地脈沖時,輸出軸保持在相應的角度。如果舵機初始角度狀態(tài)在0°位置,那電機只能朝著一個方向運動。舵機所采用地驅動信號為脈沖比例調制信號(PWM),就是在的通常為20ms的周的期之內,輸入(0.5-2.5ms)變化的脈沖寬度,所對應的轉角范圍由0°變化到18的0°,脈沖寬度和轉角為線性關系。所以在初始化時,應該把的所有電機的位置定在90°位置。機器人和關節(jié)連接的的舵機的轉軸是水平轉動,控制腿部的前進和后退。
4零件的設計
4.1軀干的設計
為了便于加工以及控制器等設備的安裝,多足步行機器人的機體常采用箱型剛體結構。
對機體為長方形和菱形的兩種步行機器人進行運動學分析(如圖)后發(fā)現,近似菱形的機器人結構本體具有以下三方面明顯優(yōu)勢:一、可以減少各個腿部之間的相互干涉碰撞;二、提高了機器人本體結構的穩(wěn)定性;三、增大了機器人腿部的轉動空間。綜合以上優(yōu)點,仿蜘蛛機器人采用近似橢圓形的框架結構,為了降低機器人質量,使用高強度的鋁合金材料。軀體上預留設備安裝孔,便于安裝控制器、傳感器、電池等及走線。同時,兼顧六條腿的根部與機體相連整體布局與安裝定位。
在本設計過程中,我選用長方形軀干本體。
4.2基節(jié)設計
基節(jié)是機器人的腿的安裝位置,應考慮舵機的安裝。這兩個表的部分是用來構成一個基本部分。節(jié)片分為上層節(jié)片和基地。圖10為上基節(jié)片
圖13 基節(jié)片
做髖生長板的安裝位置腿向前伸,使腿部空間增加,可以避免兩條腿受傷,它的長度是65毫米,前面是25毫米寬度后端基礎32 mm.Consists兩個街區(qū),基地節(jié)片上中心鉆一個直徑4毫米的洞,留給轉向齒輪軸。在圓的中心為中心的圓半徑7.5毫米統一四內螺紋孔直徑是3毫米。通過與固定在轉動軸上的圓片連接,當舵機轉動時,舵機的機身就會帶動與它緊固的部分轉動。這個位置可稱為仿生蜘蛛機器人的跟關節(jié)。
下基本節(jié)片舵機與聯合平臺,放置在前面的中心半圓的半徑10毫米晶片,晶片的中心舵機與聯合洞洞的相同位置的電影由一個圓柱銷的位置。圖11為下基節(jié)片
圖14 下基節(jié)片
下基節(jié)片和上基節(jié)片在其結構上只有一個直徑是4mm的通孔的區(qū)別,其基本尺與上基節(jié)片一樣,厚度都為 3mm。
4.3關節(jié)蓋的設計
聯合覆蓋函數是用來連接關節(jié)和膝關節(jié)。剪輯與關節(jié)舵機在后面,前面的膝關節(jié)操舵裝置,由于對兩個舵機負載這部分,考慮到穩(wěn)定性,所以長度不能太長。(圖12即關節(jié)蓋)
圖15 關節(jié)蓋
前端處理長42毫米寬21毫米方孔,方孔用于修復膝關節(jié)操舵裝置由聯合封面圖還需要兩個,后面操舵裝置的聯合,通過兩個螺絲。多在洞前略大于操舵裝置的大小與位置和大小,舵機方孔,之前和之后的每一個,兩個聯合覆蓋20毫米。操舵裝置本身的固定部分。所以成四個M4螺釘,通過兩個洞,和關節(jié)封面是固定的。
聯合覆蓋的基本尺寸85毫米長,60毫米,厚度3毫米寬。后面是40毫米寬。綜合兩個舵機安裝位置,膝關節(jié)的轉向齒輪軸和聯合轉向齒輪軸的距離是30 mm.The 30 mm的線段的長度,因為腿的長度30 mm的結束似乎太短??紤]到短段可以避免兩條腿之間的碰撞,使每條腿可以鍛煉在一個安全的區(qū)域。便于操控與行走,確保了機構的可行性。
4.4脛節(jié)片的設計
脛骨連接部分的膝蓋和腳踝的腿。Shin節(jié)片直接與兩個舵機轉動軸。從頂部的腿,上部的柄節(jié)片和連接到膝關節(jié)的操舵裝置,當膝關節(jié)操舵裝置,驅動脛骨運動。在脛骨底部連接到腳踝和腳,可以促進腳,腳。從下往上,當腳腳踝舵機旋轉,地面接觸由于腳與地面接觸部分相當的腳是固定的,踝關節(jié)脛骨上轉向扭矩傳遞節(jié)片上升。傳遞上去的扭矩使仿生蜘蛛機器人的軀體運動。
在脛節(jié)兩個脛節(jié)片當中有一片需和兩個關節(jié)的舵機相連。所以有了傳動脛節(jié)片的設計。傳動的脛節(jié)片地結構圖如圖13所示
圖16 傳動脛節(jié)片
傳動脛節(jié)片的尺寸為長 75mm、寬 22mm、厚 3mm。在兩端的半圓的圓心位置加工直徑為 4mm的通孔用于與舵機相連接。在中間中心線兩邊分布有兩個直徑 2.2的通孔,加裝兩個連接桿用于兩塊脛節(jié)片的連接。連接桿的長度為 45mm。
圖17 脛節(jié)片
和傳動脛節(jié)片相對應地另一塊脛節(jié)片采用加強膝關節(jié)和踝關節(jié)的連結,結構為圖14所示
兩塊脛節(jié)片平行裝配連接,通過中間的兩根連接桿用螺釘緊固。從而組成中腿。
4.5足的設計
腳是機器人直接接觸地面的一部分,有裝在踝關節(jié)上的舵機來控制運動。為了可以減小與地面的摩擦,足前端做成了尖的圓頭狀。如圖15所示
圖18 足
足的后半部分做寬是想要能夠將舵機裝進來。由計算所得足的長度為 90mm,這個長度是從足尖到裝在足上地舵機的轉軸長度,實際足的零件的設計長度是108mm,要保證90mm后還需要有舵機的裝配空間。足寬為 30mm。
4.6連接桿的設計
為能夠把一些零件,需要添加支持。體積小和桿連接器質量成為首選的設計。首先,六條腿的機器人身體機身主板,兩塊板之間的距離需要推進的大小關節(jié)舵機來確定。寬度尺寸的操舵裝置的結構是舵機作為機身主板的基礎間距,結果表明連桿上的箱子應該是44毫米長。
通過兩頭的螺釘緊固。圖16即軀干上的連接桿。
圖19 軀干連接桿
在連接桿的兩端鉆孔攻絲加工內螺紋以便與螺釘配合。另一個是用于兩塊脛節(jié)片的連接,使得通過脛節(jié)把足和股節(jié)連接起來如:如圖17所示。
圖20 脛節(jié)連桿
4.7固定片的設計
如何使轉向軸轉矩效應的幾個關節(jié),腿需要相關和固定,以確保機器人走路腳穩(wěn)定和良好的靈活性。需要設計特殊的部分。鑒于前面設計部分設計一塊晶片固定。推動連接器與轉向齒輪軸直接連接,再由四個螺絲和節(jié)片或脛骨節(jié)片連接可以傳遞扭矩。
關節(jié)連接件通過中心孔和操舵裝置板固定圓柱銷連接,用于修復操舵裝置的位置,和機構,以確保穩(wěn)定的仿生蜘蛛機器人。另外連接片還通過四個螺釘與基節(jié)片或脛節(jié)片相連接。在跟關節(jié)與股節(jié)片相連的過程中以及在膝關節(jié)與脛關節(jié)的連接過程中,加上一條腿的過程中連接到腳踝關節(jié)和踝關節(jié)和足根的過程中需要連接定子和連接件,關鍵部分看似簡單,實際上在確保穩(wěn)定的機構行走的狀態(tài),它的作用。
通過尺寸計算可以確定零件的尺寸,根據需要設計的零件的結構,在零件設計時靈活運用如圖18和19
圖21 傳動連接片圖 圖 22 關節(jié)連接片
5.仿真圖文詳解
圖23 仿真蜘蛛初始狀態(tài)
第一步蜘蛛六足支撐站立。
圖24 蜘蛛仿真截圖
第二步綠、藍、黃三足同時抬起,其他三足保持不動,保持站立姿勢。
圖25 蜘蛛仿真截圖
第三步綠、藍兩足挺尸向前轉動,其他足不變。
圖26 蜘蛛仿真截圖
第四步綠、藍兩足落下,黃足收縮落下,紅、橙、紫三足抬起,由綠、藍、黃三足支撐站立。
圖27 蜘蛛仿真截圖
第五步綠、藍兩足向后擺動,黃足向后伸張,三足同時運動,使蜘蛛向前運動。同時紅、橙兩足向前擺動。
圖28 蜘蛛仿真截圖
第六步紅、橙、紫三足同時落下,藍、綠、黃三足同時升起。
圖29蜘蛛仿真截圖
第七步紅、黃兩足同時向后擺動,紫足向后收縮,三足同時用力使蜘蛛向前運動。綠、藍兩足向前擺動。之后從第二步開始重復運動。
結 論
感謝李蕊老師精心指導畢業(yè)設計,參考書籍和大量的機器人設計設計數據,我成功完成了仿生蜘蛛機器人的設計和研究。主要工作包括:根據需求,確定仿生機器人的總體方案、結構設計。
這個畢業(yè)設計給了我一個獨立的分析問題,解決問題,同時進一步理解和鞏固理論知識,鍛煉自己的實踐能力,為未來的工作是極大的幫助。還發(fā)現了設計中的一些不足,仍有一些有待改進,總結如下:
1). 目前我的設計,控制機器人的速度、方向,實現良好的控制,但在轉向步態(tài)變化大,轉換的步態(tài)是不夠敏感。因此需要進一步研究控制系統,完美的數學模型。
2). 為了實現仿生機器人的功能,如障礙、避障或障礙,傳感器就足夠了??梢栽黾右恍┢渌膫鞲衅?、紅外傳感器等觸摸傳感器,實現多傳感器的融合,共同完成的功能仿生機器人的性能,以便實現真正意義上的仿生機器人。
3). 建立機器人的實體模型六邊連接連接牢固能力尚且不足
畢業(yè)設計是大學在一個大的知識培訓,為我們即將到來的工作做準備。通過這次設計,我看到自己的缺點,但是從最初的不知道如何開始主動發(fā)現問題在這個過程中,我不斷磨練自己。從一開始的主題選擇,感覺一個六足機器人非常有趣。規(guī)范畢業(yè)設計之后,我看見我懷疑這個選擇是否合適,是否適合我,我可以適應。通過自己的努力慢慢克服,找到樂趣。設計的進步提高。四個月的設計即將結束。在此期間他不斷反思補償不足,學會了如何做事如何提高自己。
結論要求精煉、準確地闡述作者的研究成果或新的見解及意義和作用,還可進一步提出需要討論的問題和建議。
參考文獻:
[1] 朱玉章.未來智能機器人[J].軍事世界.2003.10.32
[2]Akhtaruzzaman,M.;Khirul Hasan,?S.K.;?Shafie,?A.A.?Design?
and?development?of?an?intelligent?autonomous?mobile?robot for?a?soccer?game?competition[J],?Proceedings?of?the?2009 International?Conference?on?Mechanical?and?Electronics?Engineering, 2010, 167-71
[3]惲為民.中國機器人發(fā)展之我見[J].讀者之聲.1995.02.30
[4]賈玉贊.淺議智能機器人發(fā)展及應用[J].太原科技.2003.03.20
[5]孟慶春,齊勇,張淑軍,杜春俠,殷波,高云.智能機器人及其發(fā)展[J].中國海洋大學學報.2004.09.831-838
[6]Bares?J?E,Whittaker?W?L.Cfiguration?of?autonomous?walkers?for?extreme?terrain[J].The?International?Journal?of?Robotics?Research,1993,12(6):535-559.
[7]Werrergreen?D,Pangels?H,Bares?J.Behavior-based?gait?execution?for?the?DANTE-II?
walking?robot[C].IEEE/RJS?international?Conference,1995,3:274-279.?
[8] Greiner?H,Shectman?A.Autonomous?legged?underwater?vechiles?for?near?land?
warfare[J].Autonomous?Underwater?Vechile?Technology,1996(6):41-48.?
[9] 馬培蓀,竇小紅,劉臻。全方位四足步行機器人的運動學研究[J].上海交通大學學報,1994,28(2):36-39.?
[10]李明東,程君實,馬培蓀等.一種形狀記憶合金驅動的微小型六足機器人[J].上海交通大學學報,2000,34(10):1426–1429.?
[11]徐小云,顏國正,丁國清.微型六足仿生機器人及其三角步態(tài)的研究[J].光學精密工程,2002,10(4):392-396.?
致謝
本畢業(yè)設計(論文)的工作是在李蕊老師的悉心指導下完成的,李蕊老師嚴謹的治學態(tài)度和科學的工作方法給了我極大的幫助和影響。在此衷心感謝四年來李蕊老師對我的關心和指導。
李蕊老師悉心指導我們完成了畢業(yè)設計(論文),在學習上和生活上都給予了我很大的關心和幫助,在此向李蕊老師表示衷心的謝意。
李蕊老師對于我的畢業(yè)設計(論文)都提出了許多的寶貴意見,在此表示衷心的感謝。
在撰寫畢業(yè)設計(論文)期間,陳超等同學對我畢業(yè)設計(論文)中的舵機選擇 研究工作給予了熱情幫助,在此向他們表達我的感激之情。
另外也感謝家人,他們的理解和支持使我能夠在學校專心完成我的學業(yè)?!?
設計一個聯合仿真為上肢外骨骼機器人協助康復
摘要:介紹了外骨骼的設計和仿真基于人類手臂的運動學,機器人用于上肢康復協助機器人。設計滿足人類手臂的運動學特征,這樣的外骨骼可以讓手臂的運動全方位的運動。我們使用聯合仿真設計的上肢外骨骼,考慮模型開發(fā)的Opensim,Solidworks設計機械結構和Matlab構建動態(tài)模型。系統運動在Simmechanics使用預測動態(tài)模擬計算獲得的獨立的關節(jié)軌跡造型外骨骼的幾個優(yōu)化問題與Tomlab SNOPT解決。使用虛擬工具的外骨骼的設計流程和模塊化的結構將允許使用3 d打印設備。外骨骼設計工作是獨立的聯合控制,以便系統能夠運行被動,輔助和active-assistive模式,記錄數據分析和支持康復運動的過程。
關鍵詞:外骨骼、robot-mediated聯合仿真、上肢、虛擬設計
1、介紹
上肢運動功能障礙是一種常見的障礙,可能影響卒中后的人。如拿起一個對象定期運動的執(zhí)行成為慢性【1】?;颊咦渲泻罂梢则寗由窠浿亟M腦復蘇和返回功能與任務特定的重復訓練[2]。傳統療法包括重復定位和活動度(ROM)運動,動員、補償技術,加強和耐力訓練。中風后,運動療法結合醫(yī)療實踐支持的電子設備(e-health)幫助病人的恢復利用虛擬環(huán)境旨在鼓勵個人執(zhí)行特定動作[3 - 5]。機器人輔助設備經常用于e-health上肢康復由于其能力,以適應不同類型的療法。機械設備是用于促進早期恢復運動的肩膀,手肘、手腕和手指[6 - 9]。已經表明,機器人的使用調節(jié)裝置來支持在上肢運動障礙康復治療中風患者,損傷措施可以顯著減少受影響的肢體[10]Robot-mediated為上肢康復包括各種形式如被動,被動和電阻。這些模式已經被Basteris分類最近和他的同事們根據他們的特點實現:活躍(Ac),輔助(如),被動(P),passive-mirrored(PM),active-assistive(AA),糾正(C),路徑指導(PG)和電阻(R)。主動模式是建立在完全的貢獻的用戶在執(zhí)行一個任務,在被動模式下的機器人負責運動,而在病人和機器人輔助模式導致任務執(zhí)行。被動反映模式中使用雙手的設備當主體執(zhí)行運動與健康的手臂復制的受損的手臂active-assistive模式機器人糾正用戶當他/她不正確執(zhí)行任務而在矯正模式下機器人停止用戶在同樣的條件下運動,這樣用戶可以奪回這個任務。在電阻模式下機器人抵抗用戶正在執(zhí)行的運動。在路徑指導模式下用戶執(zhí)行軌跡觸覺的指導下機器人[11]。
機器人外骨骼是可穿戴的機械結構是基于人類手臂的運動學產物。每個關節(jié)的運動可以通過控制驅動電機和位置傳感器位于關節(jié)的結構。這項工作集中在設計的8自由度(自由度)外骨骼,預計在被動執(zhí)行,輔助和active-assistive模式。在流行robot-mediated設備已經在該領域的研究流行robot-mediated設備的過去的那些年里,執(zhí)行下一個多的模式,我們可以提到active-assistive手臂外骨骼的骨頭,在active-assistive KINARM混合動力外骨骼,輔助MAHI EXO-II L-Exos機器人外骨骼和活躍的仿生矯正法Neurorehabilitation肘部和肩膀骨頭氣動動力外骨骼的運動學設計復制人類手臂的運動的正常范圍。骨骼的控制系統可以通過編程所以援助算法可以根據用戶的需要添加[12]。KINARM外骨骼是一個商業(yè)設備使用的聯系,讓肘部和肩膀的運動在水平平面。KINARM記錄模式的控制系統的獨立運動和關節(jié)力矩為了復制任務或應用加載[13]。的MAHI EXO-II是一個自由度的機器人外骨骼內置兩個肘部和前臂轉動關節(jié),和一個球形關節(jié)的手腕與直流換向器電動機驅動。的設計MAHI EXO-II允許用戶記錄每個關節(jié)的運動獨立為一個精確的手臂和手腕運動的知識。(14、15)。L-Exo是一個自由度的外骨骼,力反饋擬人化的胳膊和四個關節(jié)驅動允許的肩部和肘部的ROM。系統也有一個被動關節(jié),讓手腕運動(16、17)。
在本文中,我們目前的設計和仿真外骨骼基于人類手臂的運動學,旨在用于上肢康復機器人協助。該設備是一個八自由度機械結構與獨立的轉動關節(jié),將允許用戶移動全羅的手臂外骨骼是肌肉骨骼的聯合仿真軟件開發(fā)的建模和仿真運動(Opensim),計算機輔助設計軟件(Solidworks)和機械系統仿真環(huán)境(MATLAB-Simmechanics)。圖1顯示了包含元素的流程圖中使用的發(fā)展系統。首先,我們使用的上肢Opensim中開發(fā)一個模型提供了一個人類手臂的運動學為基礎設計Solidworks的外骨骼結構。Solidworks結構提供了物理特性和慣性數據使用的外骨骼,后來在Matlab構建動態(tài)模型。自從上肢模型提供數據來模擬一個手肘旋轉,我們預測動態(tài)(PD)用于計算獨立的各關節(jié)軌跡外骨骼考慮人類手臂的ROM。我們建模外骨骼系統的優(yōu)化問題,基于動態(tài)模型使用從Tomlab SNOPT解決它們。最后,我們模擬了外骨骼在Simmechanics考慮聯合使用PD軌跡了。實驗部分給出了一個洞察力Solidworks的外骨骼的設計過程和仿真的外骨骼Simmechanics動態(tài)模型。最后兩個部分分析模擬的結果和討論外骨骼的針對性,根據設計的目標。
2、實驗部分
窗體底端
2.1、設計目標
外骨骼的設計考慮特定的特點,所以,一旦建成,機器人裝置可成功用于援助和恢復運動。主要objectiveof設計是滿足人類手臂的運動學特征考慮獨立的聯合控制,這樣的外骨骼允許運動解剖中心旋轉運動[18]。擬人化設計將允許完整的人類手臂的ROM的執(zhí)行一些運動和日常生活活動(ADL)[19]。外骨骼是為了支持卒中后患者的康復,能夠增加訓練強度,以允許用戶實踐運動任務本身的自然和直觀的交互[20]。設計必須考慮安全可靠性、簡單的耐磨性和可移植性和可用性/驗收(21、22)。最后,系統必須有能力記錄每個關節(jié)的運動,以監(jiān)視和分析孤立運動[14]。
2.2、生物力學的人類的手臂
上肢的運動學位于肩胛骨的運動的肩膀,前臂和手。完全的組合兩個或更多,或者通過執(zhí)行這些元素的獨立運動手臂負責定位空間。每個元素參與的運動學上肢有至少一個自由度有限的活動范圍如表1所示。在運動參與手定位任務:肩胛骨彎曲/擴展;肩膀彎曲/擴展,內收/綁架,中位數/橫向旋轉;屈肘/擴展,前臂旋后,手綁架/內收和彎曲/擴展[23]。
窗體頂端
?
窗體底端
2.2.1、一只手臂運動的仿真
外骨骼的設計是基于一個精確的模型50百分位人體手臂的男性(170厘米高)由Holzbaur和同事。該模型定義了人類手臂的運動學為15自由度系統,包括三個自由度的肩膀,兩肘景深,兩個自由度的手腕,食指和四個自由度的四自由度拇指[24]。模型被開發(fā)使用Opensim Delp開發(fā)的一個平臺和他的同事們在斯坦福大學的建模和仿真neuroskeletal系統[25]。我們使用了描述定義外骨骼的運動學模型。Opensim的手臂的模型包括彎頭的逆運動學仿真旋轉從0到90度。
表1。上肢的元素和他們的活動范圍
DOF
運動
t旋轉角度(度)下限/上里美
肩胛骨
1
彎曲度/ 伸展度
20/15
肩膀
1
彎曲度/ 伸展度
140-180/60
2
內側/外側
90/20
3
外展/內收
180/20
肘
1
彎曲度/ 伸展度
150/10
前臂
1
上翻/下翻
90/80
手腕
1
外展/內收
25-30/30-40
2
彎曲度/ 伸展度
60-80/60-90
2.3、設計規(guī)范
在Solidworks外骨骼機械結構的設計,外骨骼是一種基于上肢八自由度ROM表1所示。外骨骼元素的尺寸是基于人類手臂的尺寸模型50百分位男性[24]。圖2顯示了外骨骼機械結構的示意圖。圖2(一個)顯示外骨骼的八自由度的結構。:所有的關節(jié)為J1,J2,J3,閣下,J5,衛(wèi)星,J7和J8轉動。背面的外骨骼,圖2所示(b),作為支持外骨骼也認為電池。的側面的外骨骼initialpose圖2所示(c)。圖2(d)顯示了人類的手臂和肘部時的外骨骼是在一個90度的位置。
a b c d
圖1所示。外骨骼機械結構:1)示意圖和自由度,b)和c)人類手臂外骨骼的側面安裝模式,d)外骨骼和人類手臂的肘部時在一個90度的位置
2.3.1、聯合布局
結構由八個移動部件或鏈接顯示在圖3。圖3(一個)顯示元素負責肩胛骨彎曲/擴展運動。圖3中的元素(b),圖3(c)和圖3(d)允許綁架/內收,彎曲/擴展和內側/外側的肩膀。圖3中的元素(e)允許屈肘/擴展。圖3中的元素(f)允許前臂旋后運動。圖3中的元素(g)和圖3(h)允許手綁架/內收和彎曲/擴展,分別。
2.3.2、動態(tài)模型
外骨骼的動態(tài)模型表示為情商(1):
影響關節(jié)和代表執(zhí)行所需的扭矩所需的運動[26]。外骨骼的動態(tài)模型建立了考慮機械結構的物理特性,由于大量的自由度的系統,我們使用遞歸動態(tài)基礎上的貢獻所有力量影響每個鏈接為了找到整個系統的動力。在構建和模型的仿真系統被認為是無摩擦。
2.3.3、預測動態(tài)
動態(tài)預測是用來預測人類運動造型系統作為一個優(yōu)化問題,以發(fā)現未知的關節(jié)角和未知的廣義力參與特定動作(27、28)。我們使用預測動態(tài)找到新軌跡,作為參考的外骨骼關節(jié)控制器系統的模擬。所需的旋轉接頭,問題是模型來確定關節(jié)關節(jié)角受到限制,運動方程和物理和其他約束,同時最小化代價函數。Eq。(2)顯示了優(yōu)化問題的考慮兩種不同的成本函數:動態(tài)的努力表示為一體的廣場的所有關節(jié)扭矩()隨著時間的推移和最小關節(jié)旋轉時間();的約束
2.4、模擬的性能
外骨骼機械結構的開發(fā)Simmechanics為了模擬系統的性能。如前所述,手臂的模型包括彎頭的逆運動學仿真旋轉從0到90度,因此我們使用預測動態(tài)發(fā)現關節(jié)軌跡,將作為參考關節(jié)控制器。首先我們得到的關節(jié)角彎頭在Opensim旋轉,自定義的優(yōu)化問題是考慮兩個不同的成本函數,我們使用SNOPT解算器從TOMLAB優(yōu)化環(huán)境在MATLAB解決PD問題為了找到成本函數將提供最接近真正的關節(jié)軌跡。PD的問題被認為是動態(tài)的努力和成本函數的執(zhí)行時間;約束所需的運動限制,所需的扭矩限制和所需的執(zhí)行時間。最小的時間是0.9秒的模擬肘部旋轉Opensim中執(zhí)行。最大的值所需的扭矩的重量,每個關節(jié)外骨骼的支持。:關節(jié)為J1 J2,J3和閣下支持整個手臂的重量,聯合J5支持下臂的重量和手,關節(jié),J7,J8支持的手。上臂的權重,較低的手臂和手被從50百分位maleaccording丘吉爾和他的同事們[29]。該模型的外骨骼Simmechanics建成的考慮實施提供的物理特性和慣性數據臂嗎模型和系統的機械結構。各關節(jié)的外骨骼控制獨立使用比例積分微分(PID)控制器。我們模擬了外骨骼的性能考慮不同角度的八個關節(jié)的基于低限制了人類的手臂外骨骼羅各關節(jié)的外骨骼搬一次使用關節(jié)軌跡通過預測動態(tài)擔任參考信號的獨立的關節(jié)控制器在模擬外骨骼的運動。
3、結果
逆運動學問題的肘部運動Opensim和執(zhí)行軌跡獲得PD的問題的解決方案在考慮轉矩平方和最小時間成本函數圖4所示。PD問題的兩種解決方案Opensim靠近肘部軌跡。然而,PD與最低的時間成本函數提出了一個更大的均方誤差(MSE)的解決方案時獲得的使用方無邊女帽作為一個成本函數。最短時間給了241.4879的平均誤差和扭矩10.2932平方給了一個錯誤,這意味著考慮動態(tài)工作作為一個成本函數解決優(yōu)化問題提供了一個最親密的方法計算旋轉肘0到90度。由于建議成本函數似乎提供良好的真正方法軌跡,我們解決了八PD問題找到外骨骼的關節(jié)軌跡考慮最小時間和轉矩廣場。解決方案被用作參考信號的每個關節(jié)PID控制器的外骨骼運動的模擬。從0到20度,關節(jié)1旋轉關節(jié)2從0到140度旋轉,旋轉關節(jié)3從0到90度,聯合4從0到180度旋轉,聯合5從0到150度旋轉,聯合6從0到90度旋轉,聯合7旋轉從0到25度,聯合8旋轉從0到60度。圖5顯示關節(jié)的關節(jié)軌跡測量的外骨骼。
4、討論
這項工作提出了外骨骼的設計旨在用于robot-mediated療法中風病人的上肢。利用Opensim的特點模擬人類手臂,可以設計一個外骨骼,允許的運動解剖的中心旋轉運動期間人類手臂的每個元素。Solidworks外骨骼的結構設計和提供精確的物理測量長度、質量、質量和慣性中心數據,允許每個元素的結構建設的外骨骼MATLAB動態(tài)模型,并為仿真模型
運動在Simmechanics發(fā)達。動態(tài)模型有助于模型系統預測動力學問題,是用來預測的運動肘考慮轉矩廣場和旋轉所需的最小執(zhí)行時間成本函數。的解決優(yōu)化問題是準確的手肘旋轉相比一只手臂模型由Holzbaur Opensim和他的同事們。我們計算均方錯誤定義代價函數給最準確的方法。結果表明,預測動態(tài)轉矩平方作為一個成本函數有一個更小的均方誤差。的
模型實現的手臂Opensim肘關節(jié)的運動只提供數據,我們使用預測動態(tài)預測幾個關節(jié)的旋轉軌跡模擬肩膀,手肘和手腕。進一步研究認為動作捕捉的實現系統分析上肢的運動關節(jié)旋轉模擬的執(zhí)行這項工作,成本函數的分析結果將顯示手臂運動提供了最好的方法在執(zhí)行特定的聯合旋轉。外骨骼滿足的運動學特征人類手臂考慮獨立的聯合控制,允許全面的運動執(zhí)行重復的練習和運動任務支持卒中后康復患者相比其他系統如KINARM只支持的康復肘部和肩膀在水平面;MAHI EXO-II的5自由度允許therehabilitation肘,前臂和手腕;L-EXO旨在恢復的肩膀和肘部。因為利用聯合仿真的虛擬工具可以設置相應的,可以構建個性化設備根據每個用戶的需求。模塊化的外骨骼的設計將允許其使用聚合物將建設3 d打印機為用戶降低設備的重量,有利于其耐磨性和可移植性。自外骨骼設計獨立的聯合控制,系統將有能力為協助編寫算法類似于骨頭外骨骼,使其工作被動,輔助和active-assistive模式。提出獨立的聯合
各關節(jié)運動的控制適用于記錄執(zhí)行期間所需的鍛煉或運動任務,外骨骼KINARM,MAHI EXO-II,L-EXO做。這特征將有助于康復過程的跟蹤,將允許用戶分析適當時手臂的關節(jié)軌跡移動的羅在具體的執(zhí)行任務,如挑選對象。這一特點也將有助于分析的準確性不同的關節(jié)軌跡計算使用預測動態(tài)確定針對性使用外骨骼負責運動時手臂的被動和active-assistive模式,創(chuàng)建一個數據庫來測試未來個性化的外骨骼。未來工作包括外骨骼的建設和識別的摩擦動力學模型的驗證。