數(shù)字簽名與認(rèn)證協(xié)議.ppt

上傳人:max****ui 文檔編號(hào):14551630 上傳時(shí)間:2020-07-23 格式:PPT 頁數(shù):21 大?。?60.81KB
收藏 版權(quán)申訴 舉報(bào) 下載
數(shù)字簽名與認(rèn)證協(xié)議.ppt_第1頁
第1頁 / 共21頁
數(shù)字簽名與認(rèn)證協(xié)議.ppt_第2頁
第2頁 / 共21頁
數(shù)字簽名與認(rèn)證協(xié)議.ppt_第3頁
第3頁 / 共21頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《數(shù)字簽名與認(rèn)證協(xié)議.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)字簽名與認(rèn)證協(xié)議.ppt(21頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第十章 數(shù)字簽名與認(rèn)證協(xié)議,1 EIGamal簽名方案 該方案是特別為簽名的目的而設(shè)計(jì)的。1985年提出,很大程度上為Diffe-Hellman密鑰交換算法的推廣和變形。這個(gè)方案的改進(jìn)已被美國NIST(國家標(biāo)準(zhǔn)和技術(shù)研究所)采納作為數(shù)字簽名標(biāo)準(zhǔn)。 方案:P為素?cái)?shù),F(xiàn)P中的離散對(duì)數(shù)問題是難處理的。取本原元Fp*,消息集合M=Fp*,簽名集合A=Fp*Zp-1,定義K=(p,,a,)| = a(modp),值p,和是公開的,a是保密的。 對(duì)K=( p,,a,)和一個(gè)(秘密)隨機(jī)數(shù)k Zp-1*,對(duì)消息x,M進(jìn)行簽名: SigK(x,k)=(,), 其中,=k(modp), =(x-

2、)k-1(modp-1) 對(duì)x, Fp*和Zp-1,驗(yàn)證簽名定義為 Ver(x, ,)=真(true)x(modp) 對(duì)EIGamal簽名方案安全性的討論: 若Oscar在不知道a的情況下企圖偽造一個(gè)給定消息x的簽名: Sigoscar(x,k)=(,) (1)Oscar先選定一個(gè),然后企圖找,這樣,他就必須解一個(gè)關(guān)于未知數(shù)的方程: x(modp) 這個(gè)方程是一個(gè)已知無可行解法的難處理問題!,(2)Oscar先選定一個(gè) ,使其滿足: x(modp),于是, -x(modp),這樣,他就必須計(jì)算離散對(duì)數(shù) log(-x)=?,這自然是難處理的問題! (3)若兩者, 都被 Oscar首先

3、選定,然后企圖解出一個(gè)隨機(jī)消息x,使得x(modp),于是Oscar利用這種方式也不能偽造隨機(jī)消息的簽名。 (4) Oscar同時(shí)選擇, 和x來偽造簽名問題: 假設(shè)i和j是整數(shù),0<=I<=p-2,0<=j<=p-2,且(j,p-1)=1,先完成下列計(jì)算: ij(modp) -j-1(modp-1) x=-ij-1(modp-1) (其中j-1是用模p-1來計(jì)算的),可以證實(shí)(, )是一個(gè)消息x的有效簽名: 例子:假設(shè)p=467,=2和=132,它們?yōu)锽ob公開的簽名方案中的參數(shù)。Oscar利用這些參數(shù)偽造對(duì)一隨機(jī)信息x的簽名: 選擇i=99和j=179

4、,那么j-1(modp-1)=151,計(jì)算出下列的x,, :,那么(117,41)是消息331的一個(gè)有效簽名。驗(yàn)證: 因此,這個(gè)偽造的簽名有效! (5)其他類型的偽造簽名: Oscar依據(jù)Bob已簽名的消息來做偽簽名。假設(shè)(, ) 是一個(gè)消息x的有效簽名,那么Oscar可以用此來偽簽其它 消息: 設(shè)h,i,j為整數(shù),0<=h,i,j<=p-2且 ,計(jì)算,(其中 是模p-1算出) 然后可驗(yàn)證出 因此 , 為假消息 的一個(gè)有效簽名 討論兩個(gè)問題: (1)用EIGamal方案計(jì)算一個(gè)簽名時(shí),使用的隨機(jī)數(shù)k為什么不能泄露? (2)若Bob用相同的值來簽名不同的

5、兩份消息,Oscar能否攻破這個(gè)體制?,2 數(shù)字簽名標(biāo)準(zhǔn),公布于1994年5月19日的聯(lián)邦記錄上,并于1994年12月1日采納為標(biāo)準(zhǔn)DSS。DSS為EIGamal簽名方案的改進(jìn)。 DSS:p為512bit的素?cái)?shù),q為160比特的素?cái)?shù),且q|p-1, Fp*,且為模p的q次單位根。消息集合P=Fp*,簽名集合A=FqFq,定義K=(p,,a,)| = a(modp),值p,q,和是公開的,a是保密的。 取xP,對(duì)K=( p,q,,a,)和一個(gè)(秘密)隨機(jī)數(shù)k (1<=k<=q-1) ,定義 SigK(x,k)=(,), 其中,=k(modp)(modq), =(x+ )k-1(mod

6、q) 對(duì)xFp*和,Fq來說,按下述計(jì)算來驗(yàn)證簽名的真?zhèn)危?注:1*.DSS的使用涉及到Smart卡的使用,要求短的簽名。DSS以一個(gè)巧妙的方法修改了EIGamal方案,使得簽名160bits消息產(chǎn)生一個(gè)320bit的簽名,但是計(jì)算使用了512比特的模p. 2*.要求 在整個(gè)簽名算法中,如果計(jì)算了一個(gè)值 ,程序自動(dòng)拒絕,并且產(chǎn)生一個(gè)新的隨機(jī)值計(jì)算新的簽名,事實(shí)上, 的發(fā)生概率大約為2-160.,3*. DSS是一個(gè)產(chǎn)生簽名比驗(yàn)證簽名快得多的方案,驗(yàn)證簽名太慢! 4*. Smart卡的應(yīng)用??!Smart卡有有限的處理能力,但是能與計(jì)算機(jī)進(jìn)行通信。人們企圖設(shè)計(jì)一種讓

7、Smart卡僅作小量運(yùn)算的簽名方案。該方案必須完成簽名、驗(yàn)證簽名兩部分,而且方便安全。 用DSS簽名的例子: 假設(shè)取q=101,p=78*9+1=7879,3為F7879的一個(gè)本原 元,所以能取=378(mod7879)=170為模p的q次單位根。 假設(shè)a=75,那么a(mod7879)=4567.現(xiàn)在, 假設(shè)Bob想簽 名一個(gè)消息x=1234,且他選擇了隨機(jī)值k=50,可算得 k-1(mod101)=99,簽名算出: =(17050(mod7879)(mod101) =2518(mod101)=94,=(1234+75*94)99(mod101)=97 簽名為(1234,94,97)。

8、 驗(yàn)證: -1=97-1(mod101)=25 , e1=1234*25(mod101)=45,e2=94*25(mod101)=27 (17045*456727(mod7879))(mod101)=2518(mod101)=94 因此,該簽名是有效的。,3 一次簽名,任何單向函數(shù)都可用來構(gòu)造一次簽名方案。該簽名對(duì)一個(gè)消息來說,唯一對(duì)應(yīng)著一個(gè)確定的簽名。這樣的簽名可驗(yàn)證任意多次。 Lamport方案: 設(shè)k為一個(gè)正整數(shù),P=0,1K,設(shè)f:YZ是一個(gè)單向函數(shù),簽名集合A=YK,對(duì)于1<=i<=k, j=0,1來說,yijY可隨機(jī)地選擇。選后,可算得 Zij=f(yij)

9、1<=i<=k,j=0,1 密鑰K由2k個(gè)y值和2k個(gè)Z值組成,y值保密而Z值公開.消息x=x1x2.xk(kbit串)。對(duì)于K=(yij,Zij|1<=i<=k,j=0,1),定義 其中,yixi=ai,f(ai)=Zixi 驗(yàn)證: 注:1*. 待簽名的消息為一個(gè)二進(jìn)制 元組,每一個(gè)都單獨(dú)簽名.這個(gè)特征決定了 “一次簽名” 2*.驗(yàn)證是簡單的檢查:簽名結(jié)果的每一個(gè)元素是相應(yīng)公開鑰元素的愿象. 例子:取單向函數(shù)f(x)=x(modp),設(shè)p=7879(素?cái)?shù)),3為F7879的本原元,定義f(x)=3x(mod7879) 假設(shè)Bob想簽名3比特消息,他選擇了6個(gè)(秘密的)隨機(jī)數(shù):,y10=5

10、831,y11=735,y20=803,y21=2467,y30=4285,y31=6449 在f的作用下計(jì)算y的像: z10=2009,z11=3810,z20=4672,z21=4721,z30=268,z31=5732 將這些Z值公開?,F(xiàn)在Bob打算簽名消息x=(1,1,0),那么對(duì)的簽名為(y11,y21,y30)=(735,2467,4285). 驗(yàn)證簽名: 3735(mod7879)=3810 32467(mod7879)=4721 34285(mod7879)=268 因此,該簽名有效。 注:該方案,僅能用于簽一個(gè)消息!一次,無法偽造。,4 不可否認(rèn)的簽名,(Chau

11、m和Van Antwerprn 1989年提出) 該簽名的特征是:驗(yàn)證簽名者必須與簽名者合作。驗(yàn)證簽名是通過詢問------應(yīng)答協(xié)議來完成。這個(gè)協(xié)議可防止簽名者Bob否認(rèn)他以前做的簽名。 一個(gè)不可否認(rèn)的簽名方案有三個(gè)部分組成: 簽名算法、驗(yàn)證協(xié)議、否認(rèn)協(xié)議 設(shè)p=2q+1是一個(gè)素?cái)?shù),它滿足q為素?cái)?shù),且Fp中的對(duì)數(shù)問題是難解的。 ,且階為q,取1,(事實(shí)上G由模p的二次剩余組成) 設(shè)P=A=G,且定義K=(p,,a,)| = a(modp),值p,和是公開的,a是保密的。,對(duì)K=(p,,a,)和消息xG,定義y=SigK(x)=xa(modp) 易見y G 。按如下協(xié)議完成驗(yàn)證:

12、(1).Alice 隨機(jī)選擇 (2)Alice計(jì)算 , 且將C送給Bob. (3)Bob計(jì)算 , 且d將送給Alice. (4)Alice接受y作為一個(gè)有效簽名,當(dāng)且僅當(dāng) 對(duì)上述這個(gè)簽名方案,要證明以下兩點(diǎn): 1)Alice將回接受按如上方案的有效簽名 2)Bob幾乎不可否認(rèn)經(jīng)Alice 驗(yàn)證過的自己的簽名。 證明(1):(alice接受Bob的簽名)。下面計(jì)算的所有指數(shù)都已做到模q約簡.,知 代入上式得 剛好與協(xié)議(4)相符,故Alice接受Bob的簽名。對(duì)于(2) Bob幾乎不可否認(rèn)經(jīng)Alice驗(yàn)證過的自己的簽名。相當(dāng)于證 明下述定 理。 定理1:若

13、 ,那么Alice以概率1/(q-1)接受y作 為x的有效簽名. 證明: Bob對(duì)x做了簽名y(=xa)給Alice后。Bob接受了Alice的 一個(gè)詢問 ,這個(gè)詢問對(duì)應(yīng)于q-1個(gè)有序?qū)?(e1,e2)。( 原因是 一旦固定,e2=f(e1)。然而, Bob不知Alice選擇了哪一對(duì)(e1,e2)來構(gòu)造出C。,如果 ,那么Bob能做的任何可能回答 , 剛好與q-1個(gè)可能的有序?qū)?e1,e2)中的一個(gè)相對(duì)應(yīng)。 由 G=, 所以對(duì)C,d,x,y來說,可設(shè) C= i,d= j,x= k,y= l,i,j,k,l ,

14、 考慮同余式: 寫出關(guān)于 的指數(shù)表示: 等價(jià)于下述方程組:,既然假設(shè) 而 y=2l,xa=(k)a= ak,所以lak, 相當(dāng)于說上述方程的系數(shù)行列式: 知該方程組僅有唯一一組解。 即對(duì)每一個(gè)dG, 對(duì)于q-1個(gè)可能的有序?qū)χ校╡1,e2),剛好 有一個(gè)是正確的回答,Bob給Alice的一個(gè)回答d,將被驗(yàn)證 的概率剛好為1/(q-1)。定理得證!,下面討論否認(rèn)協(xié)議: 目的:(1)Bob能使Alice相信一個(gè)無效的簽名是偽造的. (2)Bob簽名有效,而導(dǎo)致Alice判決錯(cuò)誤的概率為小概率事件。 否認(rèn)協(xié)議:(y?=xa)暫視為對(duì)的簽名 1)Alice 隨機(jī)選取 2)Alice計(jì)算

15、 且將送給Bob, 3)Bob計(jì)算 ,且將他回送Alice 4)Alice驗(yàn)證 5)Alice再隨機(jī)選取 6)Alice計(jì)算 ,且將他送給Bob 7)Bob計(jì)算 ,且將他回送給Alice 8)Alice驗(yàn)證,9)Alice推出 y是偽造的 定理2:如果 yxa(modp) ,且Alice和Bob都遵守否認(rèn)協(xié)議,那么 證明:注意, , 而 又 ,從而有 進(jìn)一步有,類似地,按如上方式推出 證畢。 注:我們不能假設(shè)遵守了否認(rèn)協(xié)議,他可以想方設(shè)法構(gòu)造d,D,來達(dá)到否認(rèn)自己簽過名的目的。然而,只要Alice嚴(yán)格遵守協(xié)議,Bob是無法否認(rèn)的。可證。 定理3,假設(shè)yxa(modp) 且Alice遵守否認(rèn)協(xié)議,如果 那么 成立的概率為1-1/(q-1)。,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!