位序列響應(yīng)和階躍響應(yīng).ppt

上傳人:za****8 文檔編號:14094910 上傳時間:2020-07-03 格式:PPT 頁數(shù):39 大?。?.30MB
收藏 版權(quán)申訴 舉報(bào) 下載
位序列響應(yīng)和階躍響應(yīng).ppt_第1頁
第1頁 / 共39頁
位序列響應(yīng)和階躍響應(yīng).ppt_第2頁
第2頁 / 共39頁
位序列響應(yīng)和階躍響應(yīng).ppt_第3頁
第3頁 / 共39頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《位序列響應(yīng)和階躍響應(yīng).ppt》由會員分享,可在線閱讀,更多相關(guān)《位序列響應(yīng)和階躍響應(yīng).ppt(39頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、二、單位序列響應(yīng)的概念及求解,主要內(nèi)容:,三、單位階躍序列響應(yīng)的概念及求解,重點(diǎn):,單位序列響應(yīng)和階躍響應(yīng)的求解,3.2 單位序列和單位序列響應(yīng),一、單位序列和單位階躍序列,,1. 單位序列,一、基本離散信號,3.2 單位序列和單位序列響應(yīng),2. 單位階躍序列,δ(k)與ε(k)的關(guān)系,3.2 單位序列和單位序列響應(yīng),3、復(fù)指數(shù)和正弦序列,a 可以是復(fù)數(shù)。,3.2 單位序列和單位序列響應(yīng),指數(shù)序列,3.2 單位序列和單位序列響應(yīng),正弦序列,3.2 單位序列和單位序列響應(yīng),二、單位序列響應(yīng)的概念及求解,1.定義:單位序列(樣值)響應(yīng)h(k),是離散系 統(tǒng)對δ(k) 的零狀態(tài)響應(yīng)。用h(k)

2、表示。,2.求解:,(1) 迭代法;,(3) 直接用傳輸算子H(E)的有關(guān)公式。,3.2 單位序列和單位序列響應(yīng),(2) 變輸入為邊界條件;,例1 求單位序列響應(yīng)h(k),y(k-1),y(k-2),解:(1)寫出系統(tǒng)差分方程。,+,3.2 單位序列和單位序列響應(yīng),,(2)求齊次解。,(3)求C1、C2。,3.2 單位序列和單位序列響應(yīng),解:系統(tǒng)零狀態(tài)。y(-1)=0。,求:h(k)。,迭代得:h(0)=1;h(1)=9/5;h(2)=66/25。,例 2,3.2 單位序列和單位序列響應(yīng),3.2 單位序列和單位序列響應(yīng),h(3)=-66/125。,解法2:,h1(-1)=0,(此題還可用線性性

3、質(zhì)求。),,迭代得: h1(0)=1,3.2 單位序列和單位序列響應(yīng),三、移序算子E:,3.2 單位序列和單位序列響應(yīng),直接用H(E)的有關(guān)公式:,3.2 單位序列和單位序列響應(yīng),解:,求:h(k)。,例3,3.2 單位序列和單位序列響應(yīng),四、單位階躍序列響應(yīng)的概念及求解,1.定義:當(dāng)激勵 f(k) = ? (k) 時LTI系統(tǒng)的零狀態(tài) 響應(yīng)。用g(k)表示。,2. h(k)與g(k) 的關(guān)系,3.求解:,(1)解系統(tǒng)差分方程(經(jīng)典法);,(2)利用h(k)。,3.2 單位序列和單位序列響應(yīng),例4 求階躍序列響應(yīng)g(k)。,y(k-1),y(k-2),解:(1)寫差分方程。,+,3.2

4、單位序列和單位序列響應(yīng),齊次解:,特解:,初始值:,全解:,3.2 單位序列和單位序列響應(yīng),(2)利用h(k),3.2 單位序列和單位序列響應(yīng),解:,求:階躍響應(yīng)g(k)。,利用h(k)求解,3.2 單位序列和單位序列響應(yīng),例5,3.3 卷積和,四、利用卷積和求零狀態(tài)響應(yīng),主要內(nèi)容:,二、卷積和的計(jì)算,重點(diǎn):,一、卷積和定義,三、卷積和的性質(zhì),利用卷積和求零狀態(tài)響應(yīng),卷積和的計(jì)算,一、信號的分解:,二、卷積和定義,與連續(xù)時間函數(shù)的卷積積分的對應(yīng)關(guān)系,3.3 卷積和,三、卷積和的應(yīng)用,1、離散信號的時域分析,2、離散系統(tǒng)的時域分析,,LTI,,,3.3 卷積和,四、卷積和的計(jì)算,1. 圖解法,2

5、. 列表法,3. 不進(jìn)位長乘法,4. 公式法,5. 性質(zhì),6. Z變換法,(結(jié)合查表),3.3 卷積和,1.圖解法,適用于有限長序列的卷積和,(1)翻轉(zhuǎn),(2)平移,(3)相乘,(4)求和,3.3 卷積和,例1 計(jì)算二序列卷積和,已知,解:,3.3 卷積和,3.3 卷積和,,3.3 卷積和,,,3.3 卷積和,,,,,,,,,,,,,2.列表法,適用于有限長序列的卷積和,1)排序按序號升;2)定首項(xiàng)的序號。,例2 計(jì)算二序列卷積和,已知,3.3 卷積和,,,,,,,,,,,列表法,3.3 卷積和,例3 計(jì)算二序列卷積和,f1(k) 2 1 4 1,f2(k) 3 1 5,,10 5

6、 20 5,2 1 4 1,6 3 12 3,,6 5 23 12 21 5,↑,右端對齊,不進(jìn)位,首項(xiàng)序號等于兩序列的首項(xiàng)序號之和,3. 不進(jìn)位長乘法,適用于有限長序列的卷積和,例4 計(jì)算二序列卷積和,已知,1 2 3,1 1 1 1,,1 2 3,1 2 3,1 2 3,1 2 3,,1 3 6 6 5 3,↑,3.3 卷積和,4. 公式法,級數(shù)求和公式 P100,適用于無限長序列的卷積和,例,求,解:,3.3 卷積和,當(dāng) a≠b 時,當(dāng) a=b 時,當(dāng) a=b =1時,當(dāng) a≠1,b =1時,3.3 卷積和,卷積和上下限的確定,①有限長序列f1(k)和f2(k) ,卷積和上下限等于 f1(k)和f2(k)上下限之和;,②因果序列, 可借助于?(k)確定上下限。,3.3 卷積和,卷積和的計(jì)算,① 有限長序列的卷積和,②,③ 有限長序列與無限長序列的卷積和 1. 公式法; 2. 可將有限長序列用單位序列表示; 3. 也可用線性性質(zhì)。,1. 圖解法,2. 列表法,3. 不進(jìn)位長乘法,1. 公式法,無限長序列的卷積和,3.3 卷積和,,,作業(yè) P111 3.8 (3)(5) 3.10(b) 3.14(b),預(yù)習(xí) 3.3 4.1,總結(jié) 一、單位序列和單位階躍序列 二、單位序列響應(yīng)的概念及求解 三、單位階躍序列響應(yīng)的概念及求解 四、卷積和定義與計(jì)算,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!