《初二數學一次函數知識點總結 (2)》由會員分享,可在線閱讀,更多相關《初二數學一次函數知識點總結 (2)(4頁珍藏版)》請在裝配圖網上搜索。
1、一次函數知識點總結
基本概念
1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。
例題:在勻速運動公式中,表示速度,表示時間,表示在時間內所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.
2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。
*判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應
例題:下列函數(
2、1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1中,是一次函數的有( )
(A)4個 (B)3個 (C)2個 (D)1個
3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。
4、確定函數定義域的方法:
(1)關系式為整式時,函數定義域為全體實數;(2)關系式含有分式時,分式的分母不等于零;
(3)關系式含有二次根式時,被開放方數大于等于零;(4)關系式中含有指數為零的式子時,底數不等于零;
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。
3、
例題:下列函數中,自變量x的取值范圍是x≥2的是( )
A.y= B.y= C.y= D.y=·
函數中自變量x的取值范圍是___________.
已知函數,當時,y的取值范圍是 ( )
A. B. C. D.
5、函數的圖像
一般來說,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數的圖象.
6、函數解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做解析式。
7、描點法畫函數圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應的函數值);
第二
4、步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數的表示方法
列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規(guī)律。
解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。
9、正比例函數及性質
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.
注:正比
5、例函數一般形式 y=kx (k不為零) ① k不為零 ② x指數為1 ③ b取零
當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數,k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經過一、三象限;k<0時,圖像經過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
例題:.正比例函數,當m 時
6、,y隨x的增大而增大.
若是正比例函數,則b的值是 ( )
A.0 B. C. D.
.函數y=(k-1)x,y隨x增大而減小,則k的范圍是 ( )
A. B. C. D.
東方超市鮮雞蛋每個0.4元,那么所付款y元與買鮮雞蛋個數x(個)之間的函數關系式是_______________.
平行四邊形相鄰的兩邊長為x、y,周長是30,則y與x的函數關系式是__________.
10、一次函數及性質
一般地,形如y=kx+b(k,b是常數,k≠0),那么y叫做x
7、的一次函數.當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數.
注:一次函數一般形式 y=kx+b (k不為零) ① k不為零 ②x指數為1 ③ b取任意實數
一次函數y=kx+b的圖象是經過(0,b)和(-,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數,k0)
(2)必過點:(0,b)和(-,0)
(3)走向: k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限
b>0,圖象
8、經過第一、二象限;b<0,圖象經過第三、四象限
直線經過第一、二、三象限 直線經過第一、三、四象限
直線經過第一、二、四象限 直線經過第二、三、四象限
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.
(6)圖像的平移: 當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位.
例題:若關于x的函數是一次函數,則m= ,n .
.函數y=ax+b與y=bx+a的圖象在同一坐標系內的
9、大致位置正確的是( )
將直線y=3x向下平移5個單位,得到直線 ;將直線y=-x-5向上平移5個單位,得到直線 .
若直線和直線的交點坐標為(),則____________.
已知函數y=3x+1,當自變量增加m時,相應的函數值增加( )
A.3m+1 B.3m C.m D.3m-1
11、一次函數y=kx+b的圖象的畫法.
根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:
10、(0,b),.即橫坐標或縱坐標為0的點.
b>0
b<0
b=0
k>0
經過第一、二、三象限
經過第一、三、四象限
經過第一、三象限
圖象從左到右上升,y隨x的增大而增大
k<0
經過第一、二、四象限
經過第二、三、四象限
經過第二、四象限
圖象從左到右下降,y隨x的增大而減小
若m<0, n>0, 則一次函數y=mx+n的圖象不經過 ( )
A.第一象限 B. 第二象限 C.第三象限 D.第四象限
12、正比例函數與一次函數圖象之間的關系
一次函數y=kx
11、+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).
13、直線y=k1x+b1與y=k2x+b2的位置關系
(1)兩直線平行:k1=k2且b1 b2
(2)兩直線相交:k1k2
(3)兩直線重合:k1=k2且b1=b2
14、用待定系數法確定函數解析式的一般步驟:
(1)根據已知條件寫出含有待定系數的函數關系式;
?。?)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程;
?。?)解方程得出未知系數的值;
?。?)將求出的待定系數代回所求的函數關系式中得出所
12、求函數的解析式.
15、一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值. 從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
16、一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(?。┯?時,求自變量的取值范圍.
17、一次函數與二元一次方程組
(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y=的圖象相同.
(2)二元一次方程組的解可以看作是兩個一次函數y=和y=的圖象交點.