(天津專用)2020屆高考數(shù)學一輪復習 考點規(guī)范練15 導數(shù)的綜合應用(含解析)新人教A版

上傳人:Sc****h 文檔編號:122764827 上傳時間:2022-07-21 格式:DOCX 頁數(shù):10 大?。?.30MB
收藏 版權申訴 舉報 下載
(天津專用)2020屆高考數(shù)學一輪復習 考點規(guī)范練15 導數(shù)的綜合應用(含解析)新人教A版_第1頁
第1頁 / 共10頁
(天津專用)2020屆高考數(shù)學一輪復習 考點規(guī)范練15 導數(shù)的綜合應用(含解析)新人教A版_第2頁
第2頁 / 共10頁
(天津專用)2020屆高考數(shù)學一輪復習 考點規(guī)范練15 導數(shù)的綜合應用(含解析)新人教A版_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(天津專用)2020屆高考數(shù)學一輪復習 考點規(guī)范練15 導數(shù)的綜合應用(含解析)新人教A版》由會員分享,可在線閱讀,更多相關《(天津專用)2020屆高考數(shù)學一輪復習 考點規(guī)范練15 導數(shù)的綜合應用(含解析)新人教A版(10頁珍藏版)》請在裝配圖網上搜索。

1、考點規(guī)范練15 導數(shù)的綜合應用 一、基礎鞏固 1.已知函數(shù)f(x)=x3+ax2+bx+c在x=-23與x=1處都取得極值. (1)求a,b的值及函數(shù)f(x)的單調區(qū)間; (2)若對于x∈[-1,2],不等式f(x)0),e為自然對數(shù)的底數(shù). (1)若過點A(2,f(2))的切線斜率為2,求實數(shù)a的值; (2)當x>0時

2、,求證:f(x)≥a1-1x; (3)若在區(qū)間(1,e)內,f(x)x-1>1恒成立,求實數(shù)a的取值范圍. 4.(2018全國Ⅰ,理21)已知函數(shù)f(x)=1x-x+aln x. (1)討論f(x)的單調性; (2)若f(x)存在兩個極值點x1,x2,證明:f(x1)-f(x2)x1-x20)在x=1處取極值,其中a,b為常數(shù). (1)若a>0,求函數(shù)f(x)的單調區(qū)間; (2)若函數(shù)f(x)在x=1處取極值-1-c,且不等式f(x)≥-2c2恒成立,求實數(shù)c的取值范圍; (3)若

3、a>0,且函數(shù)f(x)有兩個不相等的零點x1,x2,證明:x1+x2>2. 6.設函數(shù)f(x)=x2+bx-aln x. (1)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n. (2)若對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0 成立,求實數(shù)a的取值范圍. 7.已知函數(shù)f(x)=ax-ln x. (1)過原點O作函數(shù)f(x)圖象的切線,求切點的橫坐標; (2)對?x∈[1,+∞),不等式f(x)≥a(2x-x2)恒成立,求實數(shù)a的取值范圍. 三、高考預測 8.(2018天津

4、,文20)設函數(shù)f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差為d的等差數(shù)列. (1)若t2=0,d=1,求曲線y=f(x)在點(0,f(0))處的切線方程; (2)若d=3,求f(x)的極值; (3)若曲線y=f(x)與直線y=-(x-t2)-63有三個互異的公共點,求d的取值范圍. 考點規(guī)范練15 導數(shù)的綜合應用 1.解(1)∵f(x)=x3+ax2+bx+c, ∴f'(x)=3x2+2ax+b. 又f(x)在x=-23與x=1處都取得極值, ∴f'-23=129-43a+b=0,f'(1)=3+2a+b=0, 兩式

5、聯(lián)立解得a=-12,b=-2, ∴f(x)=x3-12x2-2x+c, f'(x)=3x2-x-2=(3x+2)(x-1), 令f'(x)=0,得x1=-23,x2=1, 當x變化時,f'(x),f(x)的變化情況如下表: x -∞,-23 -23 -23,1 1 (1,+∞) f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ ∴函數(shù)f(x)的遞增區(qū)間為-∞,-23與(1,+∞),遞減區(qū)間為-23,1. (2)f(x)=x3-12x2-2x+c,x∈[-1,2], 當x=-23時,f-23=2227+c為極大值,而f(2

6、)=2+c,則f(2)=2+c為最大值,要使f(x)f(2)=2+c,解得c<-1或c>2. ∴c的取值范圍為(-∞,-1)∪(2,+∞). 2.(1)證明當a=1時,f(x)≥1等價于(x2+1)e-x-1≤0. 設函數(shù)g(x)=(x2+1)e-x-1,則g'(x)=-(x2-2x+1)e-x=-(x-1)2e-x. 當x≠1時,g'(x)<0,所以g(x)在區(qū)間(0,+∞)內單調遞減.而g(0)=0,故當x≥0時,g(x)≤0,即f(x)≥1. (2)解設函數(shù)h(x)=1-ax2e-x. f(x)在區(qū)間(0,+∞)內只有一個零點當且僅

7、當h(x)在區(qū)間(0,+∞)內只有一個零點. (i)當a≤0時,h(x)>0,h(x)沒有零點; (ii)當a>0時,h'(x)=ax(x-2)e-x. 當x∈(0,2)時,h'(x)<0;當x∈(2,+∞)時,h'(x)>0. 所以h(x)在區(qū)間(0,2)內單調遞減,在區(qū)間(2,+∞)內單調遞增. 故h(2)=1-4ae2是h(x)在區(qū)間[0,+∞)內的最小值. ①若h(2)>0,則ae24.由于h(0)=1,所以h(x)在區(qū)間

8、(0,2)內有一個零點. 由(1)知,當x>0時,ex>x2, 所以h(4a)=1-16a3e4a=1-16a3(e2a)2>1-16a3(2a)4=1-1a>0. 故h(x)在區(qū)間(2,4a)內有一個零點.因此h(x)在區(qū)間(0,+∞)內有兩個零點. 綜上,f(x)在區(qū)間(0,+∞)內只有一個零點時,a=e24. 3.(1)解∵f'(x)=ax, ∴f'(2)=a2=2,∴a=4. (2)證明令g(x)=alnx-1+1x, 則g'(x)=a1x-1x2. 令g'(x)>0,得x>1; g'(x)<0,得0

9、單調遞增. 所以g(x)的最小值為g(1)=0, 所以f(x)≥a1-1x. (3)解要使f(x)x-1>1在區(qū)間(1,e)內恒成立,即使alnxx-1-1>0在區(qū)間(1,e)內恒成立,即alnx+1-xx-1>0在區(qū)間(1,e)內恒成立. 令h(x)=alnx+1-x, 則h'(x)=ax-1. 令h'(x)>0,解得xe時,h(x)在(1,e)內單調遞增,所以h(x)>h(1)=0. 當1

10、遞減,則需h(e)≥0,而h(e)=a+1-e<0,不符合題意. 綜上,實數(shù)a的取值范圍為[e-1,+∞). 4.(1)解f(x)的定義域為(0,+∞),f'(x)=-1x2-1+ax=-x2-ax+1x2. ①若a≤2,則f'(x)≤0,當且僅當a=2,x=1時f'(x)=0,所以f(x)在區(qū)間(0,+∞)內單調遞減. ②若a>2,令f'(x)=0,得x=a-a2-42或x=a+a2-42. 當x∈0,a-a2-42∪a+a2-42,+∞時,f'(x)<0; 當x∈a-a2-42,a+a2-42時,f'(x)>0. 所以f(x)在區(qū)間0,a-a2-42,a+a2-42,+∞內單

11、調遞減,在區(qū)間a-a2-42,a+a2-42內單調遞增. (2)證明由(1)知,f(x)存在兩個極值點當且僅當a>2. 由于f(x)的兩個極值點x1,x2滿足x2-ax+1=0, 所以x1x2=1.不妨設x11. 由于f(x1)-f(x2)x1-x2=-1x1x2-1+alnx1-lnx2x1-x2=-2+alnx1-lnx2x1-x2=-2+a-2lnx21x2-x2, 所以f(x1)-f(x2)x1-x2

12、1,+∞)時,g(x)<0. 所以1x2-x2+2lnx2<0,即f(x1)-f(x2)x1-x20), 所以f'(x)=2ax+b-1x(x>0). 因為函數(shù)f(x)在x=1處取極值,所以f'(1)=2a+b-1=0,所以b=1-2a, 所以f'(x)=2ax+1-2a-1x =(x-1)1x+2a(x>0). 當a>0時,1x+2a>0,則當x∈(0,1)時,f'(x)<0; 當x∈(1,+∞)時,f'(x)>0. 所以函數(shù)f(x)的單調遞增區(qū)間為(1,+∞),單調遞減區(qū)間為(0,1]. (2)解由(1

13、)知f(x)=ax2+(1-2a)x-c-lnx. 因為函數(shù)f(x)在x=1處取極值-1-c,所以f(1)=-a+1-c=-1-c,可得a=2. 因為a>0,由(1)可知函數(shù)f(x)在區(qū)間(1,+∞)內單調遞增,在區(qū)間(0,1]上單調遞減,所以f(x)min=f(1)=-1-c. 因為不等式f(x)≥-2c2恒成立, 所以有-1-c≥-2c2,解得c≥1或c≤-12. 故實數(shù)c的取值范圍是c≥1或c≤-12. (3)證明由(1)知f(x)=ax2+(1-2a)x-c-lnx,函數(shù)f(x)在(0,1]上單調遞減,在(1,+∞)內單調遞增. 因為函數(shù)f(x)有兩個不相等的零點x1,x

14、2, 所以f(x1)=f(x2)=0. 若設x1φ(1)=0. 所以f(x)>f(2-x). 因為x1∈(0,1),所以f(x1)>f(2-x1). 又因為f(x1)=f(x2)=0, 所以f(x2)>f(2-x1), 而2-x1,x2∈(1,+∞), 函數(shù)f(x)在(1,+∞

15、)內單調遞增,所以x2>2-x1,即x1+x2>2,得證. 6.解(1)∵f(x)=x2+bx-alnx, ∴f'(x)=2x+b-ax(x>0). ∵x=2是函數(shù)f(x)的極值點, ∴f'(2)=4+b-a2=0. ∵1是函數(shù)f(x)的零點, ∴f(1)=1+b=0. 由4+b-a2=0,1+b=0,解得a=6,b=-1. ∴f(x)=x2-x-6lnx,f'(x)=2x-1-6x. 令f'(x)<0,得00,得x>2, ∴f(x)在(0,2)內單調遞減,在(2,+∞)內單調遞增. 故函數(shù)f(x)至多有兩個零點,其中1∈(0,2),x0∈(2

16、,+∞). ∵f(2)0, ∴x0∈(3,4),故n=3. (2)令g(b)=xb+x2-alnx,b∈[-2,-1],則g(b)為關于b的一次函數(shù),且為增函數(shù), 根據(jù)題意,對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立, 則g(b)max=g(-1)=x2-x-alnx<0在x∈(1,e)有解, 令h(x)=x2-x-alnx,只需存在x0∈(1,e)使得h(x0)<0即可, 由于h'(x)=2x-1-ax=2x2-x-ax, 令φ(x)=2x2-x-a,x∈

17、(1,e), 則φ'(x)=4x-1>0, 故φ(x)在(1,e)內單調遞增,φ(x)>φ(1)=1-a. ①當1-a≥0,即a≤1時,φ(x)>0,即h'(x)>0,h(x)在(1,e)內單調遞增, ∴h(x)>h(1)=0,不符合題意. ②當1-a<0,即a>1時,φ(1)=1-a<0,φ(e)=2e2-e-a, 若a≥2e2-e>1,則φ(e)<0, ∴在(1,e)內φ(x)<0恒成立,即h'(x)<0恒成立, ∴h(x)在(1,e)內單調遞減, ∴存在x0∈(1,e),使得h(x0)a>1,則φ(e)>0,∴在(1,e)內一

18、定存在實數(shù)m,使得φ(m)=0, ∴在(1,m)內φ(x)<0恒成立,即h'(x)<0恒成立,h(x)在(1,m)內單調遞減,∴存在x0∈(1,m),使得h(x0)1時,對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立. 7.解(1)設切點為M(x0,f(x0)),切線方程為y-f(x0)=k(x-x0). ∵f'(x)=a-1x, ∴k=f'(x0)=a-1x0,即切線方程為y-ax0+lnx0=a-1x0(x-x0). 又切線過原點O,∴-ax0+lnx0=-ax0+1. 由lnx0=1,解得x0=e,∴切點的橫

19、坐標為e. (2)∵不等式ax-lnx≥a(2x-x2)恒成立, ∴等價于a(x2-x)≥lnx對?x∈[1,+∞)恒成立. 設y1=a(x2-x),y2=lnx,由于x∈[1,+∞),且當a≤0時,y1≤y2,故a>0. 設g(x)=ax2-ax-lnx, 當01時,a≥lnxx2-x恒成立,令h(x)=lnxx2-x. 又x>1時,lnx

20、=x3-x,故f'(x)=3x2-1.因此f(0)=0,f'(0)=-1.又因為曲線y=f(x)在點(0,f(0))處的切線方程為y-f(0)=f'(0)(x-0),故所求切線方程為x+y=0. (2)由已知可得 f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t23+9t2.故f'(x)=3x2-6t2x+3t22-9.令f'(x)=0,解得x=t2-3或x=t2+3. 當x變化時,f'(x),f(x)的變化情況如下表: x (-∞,t2-3) t2-3 (t2-3,t2+3) t2+3 (t2+

21、3,+∞) f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ 所以函數(shù)f(x)的極大值為f(t2-3)=(-3)3-9×(-3)=63;函數(shù)f(x)的極小值為f(t2+3)=(3)3-9×3=-63. (3)曲線y=f(x)與直線y=-(x-t2)-63有三個互異的公共點等價于關于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+63=0有三個互異的實數(shù)解.令u=x-t2,可得u3+(1-d2)u+63=0. 設函數(shù)g(x)=x3+(1-d2)x+63,則曲線y=f(x)與直線y=-(x-t2)-63有三個互異的公共點等價

22、于函數(shù)y=g(x)有三個零點. g'(x)=3x2+(1-d2). 當d2≤1時,g'(x)≥0,這時g(x)在R上單調遞增,不合題意. 當d2>1時,令g'(x)=0,解得x1=-d2-13,x2=d2-13. 易得,g(x)在區(qū)間(-∞,x1)內單調遞增,在區(qū)間[x1,x2]上單調遞減,在區(qū)間(x2,+∞)內單調遞增. g(x)的極大值g(x1)=g-d2-13=23(d2-1)329+63>0. g(x)的極小值g(x2)=gd2-13=-23(d2-1)329+63. 若g(x2)≥0,由g(x)的單調性可知函數(shù)y=g(x)至多有兩個零點,不合題意. 若g(x2)<0,即(d2-1)32>27,也就是|d|>10,此時|d|>x2,g(|d|)=|d|+63>0,且-2|d|

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!