購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
貴 州 大 學(xué) 設(shè) 計(jì) 用 紙
第 - 29 -頁(yè)
目 錄
設(shè)計(jì)任務(wù)書…………………………………………………2
第一部分 傳動(dòng)裝置總體設(shè)計(jì)……………………………4
第二部分 V帶設(shè)計(jì)………………………………………6
第三部分 各齒輪的設(shè)計(jì)計(jì)算……………………………9
第四部分 軸的設(shè)計(jì)………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及數(shù)據(jù)………………………………21
設(shè) 計(jì) 任 務(wù) 書
一、 課程設(shè)計(jì)題目:
設(shè)計(jì)帶式運(yùn)輸機(jī)傳動(dòng)裝置(簡(jiǎn)圖如下)
原始數(shù)據(jù):
數(shù)據(jù)編號(hào)
3
5
7
10
運(yùn)輸機(jī)工作轉(zhuǎn)矩T/(N.m)
690
630
760
620
運(yùn)輸機(jī)帶速V/(m/s)
0.8
0.9
0.75
0.9
卷筒直徑D/mm
320
380
320
360
工作條件:
連續(xù)單向運(yùn)轉(zhuǎn),工作時(shí)有輕微振動(dòng),使用期限為10年,小批量生產(chǎn),單班制工作(8小時(shí)/天)。運(yùn)輸速度允許誤差為。
二、 課程設(shè)計(jì)內(nèi)容
1)傳動(dòng)裝置的總體設(shè)計(jì)。
2)傳動(dòng)件及支承的設(shè)計(jì)計(jì)算。
3)減速器裝配圖及零件工作圖。
4)設(shè)計(jì)計(jì)算說明書編寫。
每個(gè)學(xué)生應(yīng)完成:
1) 部件裝配圖一張(A1)。
2) 零件工作圖兩張(A3)
3) 設(shè)計(jì)說明書一份(6000~8000字)。
本組設(shè)計(jì)數(shù)據(jù):
第三組數(shù)據(jù):運(yùn)輸機(jī)工作軸轉(zhuǎn)矩T/(N.m) 690 。
運(yùn)輸機(jī)帶速V/(m/s) 0.8 。
卷筒直徑D/mm 320 。
已給方案:外傳動(dòng)機(jī)構(gòu)為V帶傳動(dòng)。
減速器為兩級(jí)展開式圓柱齒輪減速器。
第一部分 傳動(dòng)裝置總體設(shè)計(jì)
一、 傳動(dòng)方案(已給定)
1) 外傳動(dòng)為V帶傳動(dòng)。
2) 減速器為兩級(jí)展開式圓柱齒輪減速器。
3) 方案簡(jiǎn)圖如下:
二、該方案的優(yōu)缺點(diǎn):
該工作機(jī)有輕微振動(dòng),由于V帶有緩沖吸振能力,采用V帶傳動(dòng)能減小振動(dòng)帶來的影響,并且該工作機(jī)屬于小功率、載荷變化不大,可以采用V帶這種簡(jiǎn)單的結(jié)構(gòu),并且價(jià)格便宜,標(biāo)準(zhǔn)化程度高,大幅降低了成本。減速器部分兩級(jí)展開式圓柱齒輪減速,這是兩級(jí)減速器中應(yīng)用最廣泛的一種。齒輪相對(duì)于軸承不對(duì)稱,要求軸具有較大的剛度。高速級(jí)齒輪常布置在遠(yuǎn)離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現(xiàn)象。原動(dòng)機(jī)部分為Y系列三相交流異步電動(dòng)機(jī)。
總體來講,該傳動(dòng)方案滿足工作機(jī)的性能要求,適應(yīng)工作條件、工作可靠,此外還結(jié)構(gòu)簡(jiǎn)單、尺寸緊湊、成本低傳動(dòng)效率高。
計(jì) 算 與 說 明
結(jié)果
三、原動(dòng)機(jī)選擇(Y系列三相交流異步電動(dòng)機(jī))
工作機(jī)所需功率: =0.96 (見課設(shè)P9)
傳動(dòng)裝置總效率:(見課設(shè)式2-4)
(見課設(shè)表12-8)
電動(dòng)機(jī)的輸出功率: (見課設(shè)式2-1)
取
選擇電動(dòng)機(jī)為Y132M1-6型 (見課設(shè)表19-1)
技術(shù)數(shù)據(jù):額定功率() 4 滿載轉(zhuǎn)矩() 960
額定轉(zhuǎn)矩() 2.0 最大轉(zhuǎn)矩() 2.0
Y132M1-6電動(dòng)機(jī)的外型尺寸(mm): (見課設(shè)表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、傳動(dòng)裝置總體傳動(dòng)比的確定及各級(jí)傳動(dòng)比的分配
1、 總傳動(dòng)比: (見課設(shè)式2-6)
2、 各級(jí)傳動(dòng)比分配: (見課設(shè)式2-7)
初定
第二部分 V帶設(shè)計(jì)
外傳動(dòng)帶選為 普通V帶傳動(dòng)
1、 確定計(jì)算功率:
1)、由表5-9查得工作情況系數(shù)
2)、由式5-23(機(jī)設(shè))
2、選擇V帶型號(hào)
查圖5-12a(機(jī)設(shè))選A型V帶。
3.確定帶輪直徑
(1)、參考圖5-12a(機(jī)設(shè))及表5-3(機(jī)設(shè))選取小帶輪直徑
(電機(jī)中心高符合要求)
(2)、驗(yàn)算帶速 由式5-7(機(jī)設(shè))
(3)、從動(dòng)帶輪直徑
查表5-4(機(jī)設(shè)) 取
(4)、傳動(dòng)比 i
(5)、從動(dòng)輪轉(zhuǎn)速
4.確定中心距和帶長(zhǎng)
(1)、按式(5-23機(jī)設(shè))初選中心距
取
(2)、按式(5-24機(jī)設(shè))求帶的計(jì)算基礎(chǔ)準(zhǔn)長(zhǎng)度L0
查圖.5-7(機(jī)設(shè))取帶的基準(zhǔn)長(zhǎng)度Ld=2000mm
(3)、按式(5-25機(jī)設(shè))計(jì)算中心距:a
(4)、按式(5-26機(jī)設(shè))確定中心距調(diào)整范圍
5.驗(yàn)算小帶輪包角α1
由式(5-11機(jī)設(shè))
6.確定V帶根數(shù)Z
(1)、由表(5-7機(jī)設(shè))查得dd1=112 n1=800r/min及n1=980r/min時(shí),單根V帶的額定功率分呷為1.00Kw和1.18Kw,用線性插值法求n1=980r/min時(shí)的額定功率P0值。
(2)、由表(5-10機(jī)設(shè))查得△P0=0.11Kw
(3)、由表查得(5-12機(jī)設(shè))查得包角系數(shù)
(4)、由表(5-13機(jī)設(shè))查得長(zhǎng)度系數(shù)KL=1.03
(5)、計(jì)算V帶根數(shù)Z,由式(5-28機(jī)設(shè))
取Z=5根
7.計(jì)算單根V帶初拉力F0,由式(5-29)機(jī)設(shè)。
q由表5-5機(jī)設(shè)查得
8.計(jì)算對(duì)軸的壓力FQ,由式(5-30機(jī)設(shè))得
9.確定帶輪的結(jié)構(gòu)尺寸,給制帶輪工作圖
小帶輪基準(zhǔn)直徑dd1=112mm采用實(shí)心式結(jié)構(gòu)。大帶輪基準(zhǔn)直徑dd2=280mm,采用孔板式結(jié)構(gòu),基準(zhǔn)圖見零件工作圖。
第三部分 各齒輪的設(shè)計(jì)計(jì)算
一、高速級(jí)減速齒輪設(shè)計(jì)(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數(shù)選擇,因傳遞功率不大,轉(zhuǎn)速不高,材料按表7-1選取,都采用45號(hào)鋼,鍛選項(xiàng)毛坯,大齒輪、正火處理,小齒輪調(diào)質(zhì),均用軟齒面。齒輪精度用8級(jí),輪齒表面精糙度為Ra1.6,軟齒面閉式傳動(dòng),失效形式為占蝕,考慮傳動(dòng)平穩(wěn)性,齒數(shù)宜取多些,取Z1=34 則Z2=Z1i=34×2.62=89
2.設(shè)計(jì)計(jì)算。
(1)設(shè)計(jì)準(zhǔn)則,按齒面接觸疲勞強(qiáng)度計(jì)算,再按齒根彎曲疲勞強(qiáng)度校核。
(2)按齒面接觸疲勞強(qiáng)度設(shè)計(jì),由式(7-9)
T1=9.55×106×P/n=9.55×106×5.42/384=134794 N·mm
由圖(7-6)選取材料的接觸疲勞,極限應(yīng)力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極陰應(yīng)力
бHILim=230 бHILin=210
應(yīng)力循環(huán)次數(shù)N由式(7-3)計(jì)算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由圖7-8查得接觸疲勞壽命系數(shù);ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數(shù):SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應(yīng)力和許用彎曲應(yīng)力
將有關(guān)值代入式(7-9)得
則V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取標(biāo)準(zhǔn)模數(shù):m=2mm
(3) 計(jì)算幾何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齒根彎曲疲勞強(qiáng)度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強(qiáng)度.
二、低速級(jí)減速齒輪設(shè)計(jì)(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數(shù)選擇,因傳遞功率不大,轉(zhuǎn)速不高,材料按表7-1選取,都采用45號(hào)鋼,鍛選項(xiàng)毛坯,大齒輪、正火處理,小齒輪調(diào)質(zhì),均用軟齒面。齒輪精度用8級(jí),輪齒表面精糙度為Ra1.6,軟齒面閉式傳動(dòng),失效形式為占蝕,考慮傳動(dòng)平穩(wěn)性,齒數(shù)宜取多些,取Z1=34
則Z2=Z1i=34×3.7=104
2.設(shè)計(jì)計(jì)算。
(1) 設(shè)計(jì)準(zhǔn)則,按齒面接觸疲勞強(qiáng)度計(jì)算,再按齒根彎曲疲勞強(qiáng)度校核。
(2)按齒面接觸疲勞強(qiáng)度設(shè)計(jì),由式(7-9)
T1=9.55×106×P/n=9.55×106×5.20/148=335540 N·mm
由圖(7-6)選取材料的接觸疲勞,極限應(yīng)力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極陰應(yīng)力
бHILim=230 бHILin=210
應(yīng)力循環(huán)次數(shù)N由式(7-3)計(jì)算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由圖7-8查得接觸疲勞壽命系數(shù);ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數(shù):SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應(yīng)力和許用彎曲應(yīng)力
將有關(guān)值代入式(7-9)得
則V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取標(biāo)準(zhǔn)模數(shù):m=2.5mm
(3) 計(jì)算幾何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齒根彎曲疲勞強(qiáng)度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強(qiáng)度.
總結(jié):高速級(jí) z1=34 z2=89 m=2
低速級(jí) z1=34 z2=104 m=2.5
第四部分 軸的設(shè)計(jì)
高速軸的設(shè)計(jì)
1.選擇軸的材料及熱處理
由于減速器傳遞的功率不大,對(duì)其重量和尺寸也無特殊要求故選擇常用材料45鋼,調(diào)質(zhì)處理.
2.初估軸徑
按扭矩初估軸的直徑,查表10-2,得c=106至117,考慮到安裝聯(lián)軸器的軸段僅受扭矩作用.取c=110則:
D1min=
D2min=
D3min=
3.初選軸承
1軸選軸承為6008
2軸選軸承為6009
3軸選軸承為6012
根據(jù)軸承確定各軸安裝軸承的直徑為:
D1=40mm
D2=45mm
D3=60mm
4.結(jié)構(gòu)設(shè)計(jì)(現(xiàn)只對(duì)高速軸作設(shè)計(jì),其它兩軸設(shè)計(jì)略,結(jié)構(gòu)詳見圖)為了拆裝方便,減速器殼體用剖分式,軸的結(jié)構(gòu)形狀如圖所示.
(1).各軸直徑的確定
初估軸徑后,句可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6008,故該段直徑為40mm。2段裝齒輪,為了便于安裝,取2段為44mm。齒輪右端用軸肩固定,計(jì)算得軸肩的高度為4.5mm,取3段為53mm。5段裝軸承,直徑和1段一樣為40mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為42mm。6段應(yīng)與密封毛氈的尺寸同時(shí)確定,查機(jī)械設(shè)計(jì)手冊(cè),選用JB/ZQ4606-1986中d=36mm的毛氈圈,故取6段36mm。7段裝大帶輪,取為32mm>dmin 。
(2)各軸段長(zhǎng)度的確定
軸段1的長(zhǎng)度為軸承6008的寬度和軸承到箱體內(nèi)壁的距離加上箱體內(nèi)壁到齒輪端面的距離加上2mm,l1=32mm。2段應(yīng)比齒輪寬略小2mm,為l2=73mm。3段的長(zhǎng)度按軸肩寬度公式計(jì)算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和軸承6008同寬取l5=15mm。l6=55mm,7段同大帶輪同寬,取l7=90mm。其中l(wèi)4,l6是在確定其它段長(zhǎng)度和箱體內(nèi)壁寬后確定的。
于是,可得軸的支點(diǎn)上受力點(diǎn)間的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).軸上零件的周向固定
為了保證良好的對(duì)中性,齒輪與軸選用過盈配合H7/r6。與軸承內(nèi)圈配合軸勁選用k6,齒輪與大帶輪均采用A型普通平鍵聯(lián)接,分別為16*63 GB1096-1979及鍵10*80 GB1096-1979。
(4).軸上倒角與圓角
為保證6008軸承內(nèi)圈端面緊靠定位軸肩的端面,根據(jù)軸承手冊(cè)的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據(jù)標(biāo)準(zhǔn)GB6403.4-1986,軸的左右端倒角均為1*45。。
5.軸的受力分析
(1) 畫軸的受力簡(jiǎn)圖。
(2) 計(jì)算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 畫彎矩圖
在水平面上,a-a剖面左側(cè)
MAh=FR1Hl3=96652.5=50.715N·m
a-a剖面右側(cè)
M’Ah=FR2Hl2=411153=62.88 N·m
在垂直面上
MAv=M’AV=FR1Vl2=352×153=53.856 N·m
合成彎矩,a-a剖面左側(cè)
a-a剖面右側(cè)
畫轉(zhuǎn)矩圖
轉(zhuǎn)矩 3784×(68/2)=128.7N·m
6.判斷危險(xiǎn)截面
顯然,如圖所示,a-a剖面左側(cè)合成彎矩最大、扭矩為T,該截面左側(cè)可能是危險(xiǎn)截面;b-b截面處合成灣矩雖不是最大,但該截面左側(cè)也可能是危險(xiǎn)截面。若從疲勞強(qiáng)度考慮,a-a,b-b截面右側(cè)均有應(yīng)力集中,且b-b截面處應(yīng)力集中更嚴(yán)重,故a-a截面左側(cè)和b-b截面左、右側(cè)又均有可能是疲勞破壞危險(xiǎn)截面。
7.軸的彎扭合成強(qiáng)度校核
由表10-1查得
(1)a-a剖面左側(cè)
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左側(cè)
3=0.1×423=7.41m3
b-b截面處合成彎矩Mb:
=174 N·m
=27
8.軸的安全系數(shù)校核:由表10-1查得(1)在a-a截面左側(cè)
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得由附表10-4查得絕對(duì)尺寸系數(shù);軸經(jīng)磨削加工, 由附表10-5查得質(zhì)量系數(shù).則
彎曲應(yīng)力
應(yīng)力幅
平均應(yīng)力
切應(yīng)力
安全系數(shù)
查表10-6得許用安全系數(shù)=1.3~1.5,顯然S>,故a-a剖面安全.
(2)b-b截面右側(cè)
抗彎截面系數(shù)3=0.1×533=14.887m3
抗扭截面系數(shù)WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N·m,故彎曲應(yīng)力
切應(yīng)力
由附表10-1查得過盈配合引起的有效應(yīng)力集中系數(shù) 。 則
顯然S>,故b-b截面右側(cè)安全。
(3)b-b截面左側(cè)
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右側(cè)的彎矩、扭矩相同。
彎曲應(yīng)力
切應(yīng)力
(D-d)/r=1 r/d=0.05,由附表10-2查得圓角引起的有效應(yīng)力集中系數(shù)。由附表10-4查得絕對(duì)尺寸系數(shù)。又。則
顯然S>,故b-b截面左側(cè)安全。
第五部分 校 核
高速軸軸承
FR2H=Fr-FR1H=1377-966=411N
Fr2V=Ft- FR1V=1377-352=1025N
軸承的型號(hào)為6008,Cr=16.2 kN
1) FA/COr=0
2) 計(jì)算當(dāng)量動(dòng)載荷
查表得fP=1.2徑向載荷系數(shù)X和軸向載荷系數(shù)Y為X=1,Y=0
=1.2×(1×352)=422.4 N
3) 驗(yàn)算6008的壽命
驗(yàn)算右邊軸承
鍵的校核
鍵1 10×8 L=80 GB1096-79
則強(qiáng)度條件為
查表許用擠壓應(yīng)力
所以鍵的強(qiáng)度足夠
鍵2 12×8 L=63 GB1096-79
則強(qiáng)度條件為
查表許用擠壓應(yīng)力
所以鍵的強(qiáng)度足夠
聯(lián)軸器的選擇
聯(lián)軸器選擇為TL8型彈性聯(lián)軸器 GB4323-84
減速器的潤(rùn)滑
1.齒輪的潤(rùn)滑
因齒輪的圓周速度<12 m/s,所以才用浸油潤(rùn)滑的潤(rùn)滑方式。
高速齒輪浸入油里約0.7個(gè)齒高,但不小于10mm,低速級(jí)齒輪浸入油高度約為1個(gè)齒高(不小于10mm),1/6齒輪。
2.滾動(dòng)軸承的潤(rùn)滑
因潤(rùn)滑油中的傳動(dòng)零件(齒輪)的圓周速度V≥1.5~2m/s所以采用飛濺潤(rùn)滑,
第六部分 主要尺寸及數(shù)據(jù)
箱體尺寸:
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=15mm
箱蓋凸緣厚度b1=15mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M16
地腳螺栓數(shù)目n=4
軸承旁聯(lián)接螺栓直徑d1=M12
聯(lián)接螺栓d2的間距l(xiāng)=150mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
df 、d1 、d2至外箱壁的距離C1=18mm、18 mm、13 mm
df、d2至凸緣邊緣的距離C2=16mm、11 mm
軸承旁凸臺(tái)半徑R1=11mm
凸臺(tái)高度根據(jù)低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內(nèi)箱壁距離△1=10mm
齒輪端面與內(nèi)箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考機(jī)械設(shè)計(jì)課程設(shè)計(jì)P17~P21
傳動(dòng)比
原始分配傳動(dòng)比為:i1=2.62 i2=3.07 i3=2.5
修正后 :i1=2.5 i2=2.62 i3=3.07
各軸新的轉(zhuǎn)速為 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各軸的輸入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各軸的輸入轉(zhuǎn)矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
軸號(hào)
功率p
轉(zhuǎn)矩T
轉(zhuǎn)速n
傳動(dòng)比i
效率η
電機(jī)軸
5.5
2.0
960
1
1
1
5.42
128.65
384
2.5
0.94
2
5.20
323.68
148
2.62
0.96
3
5.00
954.25
48
3.07
0.96
工作機(jī)軸
4.90
935.26
48
1
0.98
齒輪的結(jié)構(gòu)尺寸
兩小齒輪采用實(shí)心結(jié)構(gòu)
兩大齒輪采用復(fù)板式結(jié)構(gòu)
齒輪z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齒輪z2的尺寸
由軸可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13
齒輪3尺寸
由軸可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齒輪4寸
由軸可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4
D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17
參考文獻(xiàn):
《機(jī)械設(shè)計(jì)》徐錦康 主編 機(jī)械工業(yè)出版社
《機(jī)械設(shè)計(jì)課程設(shè)計(jì)》陸玉 何在洲 佟延偉 主編
第3版 機(jī)械工業(yè)出版社
《機(jī)械設(shè)計(jì)手冊(cè)》
設(shè)計(jì)心得
機(jī)械設(shè)計(jì)課程設(shè)計(jì)是機(jī)械課程當(dāng)中一個(gè)重要環(huán)節(jié)通過了3周的課程設(shè)計(jì)使我從各個(gè)方面都受到了機(jī)械設(shè)計(jì)的訓(xùn)練,對(duì)機(jī)械的有關(guān)各個(gè)零部件有機(jī)的結(jié)合在一起得到了深刻的認(rèn)識(shí)。
由于在設(shè)計(jì)方面我們沒有經(jīng)驗(yàn),理論知識(shí)學(xué)的不牢固,在設(shè)計(jì)中難免會(huì)出現(xiàn)這樣那樣的問題,如:在選擇計(jì)算標(biāo)準(zhǔn)件是可能會(huì)出現(xiàn)誤差,如果是聯(lián)系緊密或者循序漸進(jìn)的計(jì)算誤差會(huì)更大,在查表和計(jì)算上精度不夠準(zhǔn)
在設(shè)計(jì)的過程中,培養(yǎng)了我綜合應(yīng)用機(jī)械設(shè)計(jì)課程及其他課程的理論知識(shí)和應(yīng)用生產(chǎn)實(shí)際知識(shí)解決工程實(shí)際問題的能力,在設(shè)計(jì)的過程中還培養(yǎng)出了我們的團(tuán)隊(duì)精神,大家共同解決了許多個(gè)人無法解決的問題,在這些過程中我們深刻地認(rèn)識(shí)到了自己在知識(shí)的理解和接受應(yīng)用方面的不足,在今后的學(xué)習(xí)過程中我們會(huì)更加努力和團(tuán)結(jié)。
由于本次設(shè)計(jì)是分組的,自己獨(dú)立設(shè)計(jì)的東西不多,但在通過這次設(shè)計(jì)之后,我想會(huì)對(duì)以后自己獨(dú)立設(shè)計(jì)打下一個(gè)良好的基礎(chǔ)。
長(zhǎng)春理工大學(xué)光電信息學(xué)院畢業(yè)設(shè)計(jì)
Introduction to the common speed reducer
Device overview:Reducer is the prime mover and work machine independent closed between the transmission device, used to reduce speed and increase torque, in order to meet the job needs, also used for growth in some occasions, known as the accelerator.
When choosing reducer should be according to the selection of working machine conditions, technical parameters, the performance of the engine, the factors such as economy, comparing the gabarite of different types and varieties of reducer, transmission efficiency and carrying capacity, quality, price, etc., choose the most suitable speed reducer.
Reducer is a relatively sophisticated machinery, the use of its purpose is to reduce rotation speed, increase torque.
Structural characteristics of
Reducer is mainly composed of transmission parts (gear or worm), shaft, bearing, box and its accessories. Its basic structure has three parts:
1.gear, shaft and bearing combination
Pinion and shaft made of an organic whole, gear shaft, this structure is used in the gear shaft and the diameter of the diameter of the weather related, if the diameter of the shaft is d, the gear tooth root circle diameter for df, when df - d 6 ~ 7 mn or less, this structure should be adopted. And when df - d > 6 ~ 7 mn, separated with gear and shaft for the two parts of the structure, such as low speed shaft and large gear. The gear and shaft circumferential fixed flat linkage, shaft parts shaft shoulder, shaft sleeve and bearing cover is used as the axial fixation. Two shaft adopts the deep groove ball bearings. This combination, the less used to bear radial load and axial load. When the axial load is larger, should adopt angular contact ball bearing, taper roller bearing and deep groove ball bearing and thrust bearing of composite structures. Bearing is the use of the gear rotates splashing through the thin oil, lubrication. Box medium oil pool of the lubricating oil, the rotation gear splash splash into the lid on the inner wall of the inner flow box side groove to points, through the oil flow into the bearing. Nu when oiled gear circumferential speed 2 m/s, or less grease lubricated bearings should be adopted, in order to avoid possible wash it splashing through the thin oil lubricating grease, the oil retaining ring can be used to separate it. To prevent loss of lubricating oil and dust into the trunk, between bearing end cover and outrigger shaft equipped with sealing element.
2. body
Enclosure is the important part in the reducer parts. It is the base of the transmission parts, should have sufficient strength and rigidity.
Cabinet is usually made of grey cast iron, for overloading or cast steel casing impact load reducer can also be used. Monomer production reducer, in order to simplify the process, to reduce the cost, can use steel plate welded box.
Gray cast iron has good casting and vibration reduction performance. To facilitate the shafting parts installation and disassembly, made along the axis line horizontal split-casing box body. On the box cover and the lower box body with a bolt connection into a whole. The connecting bolt of the bearing should be close to the bearing hole, and the bearing seat at the side of convex set, should have enough supporting material surface, in order to place the connecting bolt, and to ensure that the wrench to tighten bolts need to space. In order to ensure the body has enough stiffness, plus support rib near the bearing hole. In order to ensure the stability and reduce as much as possible on the basis of speed reducer in the mechanical processing of base plane of the area, the case base is generally not used the complete plane.
3. reducer fittings
In order to guarantee the normal work of the speed reducer, in addition to combination of gear, shaft, bearing and the structure design of box body is to give enough attention, also should be considered as reducer oil lubricating oil pool, oil discharge, check the oil level height, processing, maintenance when assembling and disassembling of the box cover and the box of accurate positioning, loading auxiliary parts and components, such as reasonable selection and design.
1) inspection to check the meshing condition of transmission parts, and to infuse lubricating oil contents, should be set in the appropriate location of the box body inspection hole. Inspection hole is located in the top lid can be observed directly on the gear mesh part. Normally, inspection hole of cover plate on the box cover with screws.
2) the ventilator speed reducer is working, the casing temperature, gas expansion pressure, to make overall thermal air free to discharge, to maintain pressure balance inside and outside, not make the lubricating oil or shaft extension along the points box surface seal leakage cracks and other, usually on the top of the box body installed ventilator.
3) bearing cover for the fixed shaft parts of axial position and carry axial load, the bearing hole on both ends with bearing cover closed. Bearing bore of flange type and embedded two kinds. Use hex bolt fixed on the box body, bearing cover is overhang shaft hole, which is equipped with sealing device. Flange type bearing cover has the advantage of tear open outfit, easy to adjust the bearing, but compared with the embedded bearing cover, the number of parts is bigger, the size is bigger, appearance is not smooth.
4) positioning pin every time in order to ensure the container cover, remained bearing hole processing accuracy, should be in before finishing the bearing hole, in the box cover and the box seats on the connecting flange of the locating pin. Placed vertically on both sides of the enclosure on the connecting flange, symmetrical body should be symmetrical arrangement, in order to avoid mistake.
5) oil level indicator to check the oil in the oil pool reducer hight, often maintain oil pool with just the right amount of oil, usually in the box body is convenient for observation, the oil level is relatively stable, installing the oil level indicator.
6) oil drain plug oil change, dirty oil and cleaner emissions, should be in the box seat, at the bottom of the oil pool of the lowest opening oil drain hole location, usually with a screw oil drain plug, oil drain plug and body joint face between gasket shall be leak proof.
7) seal screw for strengthening qi box, usually during assembly on housing subdivision surface coated with sodium silicate or sealant, when remove often due to the cementation close is difficult to open. So often the appropriate placement of the box cover connecting flange, work out ~ 2 screw holes, screwing in enlightening the box with a cylindrical side or flat side box screws. Gyration rev box screws can will cover on top. Small reducer also don't have rev. Cases of screw, when the lid with a screwdriver to pry out of the box cover, and the box can be the same as the size of the screw to the connecting bolt at the flange.
Main load
Machine with reducer connection work load condition is more complex, has much effect on the speed reducer, is one of the important factors, selection and calculation speed reducer the load state of the work machine (motivation) is the load condition, usually divided into three categories:
(1) - even load;
(2) - medium impact load;
(3) - strong impact load.
Design program
A, the original design information and data
1. the type of prime mover, specifications, speed, power (or torque), the startup characteristic, short-term overload capacity, the moment of inertia, etc.
2. the type of machine, specifications, use, speed, power (or torque). Working system: the constant load or changing load and variable load load diagram; Rev., braking and short-time overload torque, start frequency; Shock and vibration levels; Direction of rotation, etc.
3.the prime mover for machine and connection way of the reducer, shaft and if there is a radial force and axial force.
4.installation type (reducer and prime mover, the relative position of working machine, vertical and horizontal).
5.transmission ratio and its error is allowed.
6.the size and weight requirements.
7.to the degree of service life, safety and reliability requirements.
8.environmental temperature, dust concentration, air velocity and environmental conditions such as ph value; (if there is a circulating lubrication and cooling conditions, lubrication station) and the limitation on the vibration and noise.
9.to the requirements of operation and control.
10. the source of material, blank, standard parts and inventory.
11.factory manufacturing capabilities.
12.on volume, cost and price requirements.
13, the delivery date.
The article in the first four is a prerequisite, other aspects according to conventional design, such as the design life is generally! "Years. Used for important occasions, reliability should be higher.
Second, select the type of gear reducer and installation type
Three, set at the beginning of each process methods and parameters
Selected performance level, set at the beginning of the main parts of the gear and the material, heat treatment, finishing methods, lubrication, and lubrication oil.
Fourth, determine the transmission series
According to the total transmission ratio, to determine the transmission series and all levels of the transmission ratio.
Five, the initial geometry parameters
Early calculate gear transmission center distance (or pitch diameter), modulus and other geometric parameters.
Six, the overall design scheme
Determine the structure of the reducer, shaft size, span and the bearing model, etc.
Seven, check
Check the strength of the gear, shaft, key load, calculation of bearing life.
Eight, lubrication cooling calculation
To determine the speed reducer and accessory
Ten, gear carburized depth is determined
When necessary for tooth form and tooth to fix quantity calculation process data.
Eleven, drawing construction drawing
In the design should implement national and industry related standards.
Using the classification
1. reducer in use can be divided into two categories, general reducer and special reducer, design, manufacture and use of the two characteristics of each are not identical. 70-80 - s of the 20th century, reducer technology has made great development in the world, and closely integrated with the development of new technology revolution. The main types: gear reducer; Worm gear reducer; Gear - worm reducer; Planetary gear reducer.
2.general reducer has a helical gear reducer (including parallel shaft helical gear reducer, worm gear reducer, bevel gear reducer, etc.), planetary gear reducer, cycloid pin wheel reducer, the worm gear and worm reducer, planetary friction type mechanical stepless variable speed machine, and so on.
1) cylindrical gear reducer
Single stage level 2, level 2, level 2 above. Decorate a form: expansion, shunt type, coaxial type.
2) cone gear reducer
Used for the input shaft and output shaft position into the intersection.
3) worm gear reducer
Is mainly used for transmission ratio > 10 occasions, I drive more compact structure. Its defect is low efficiency. Wide application of Archimedes worm gear reducer.
4) gear - worm reducer
If gear drive level at high speed, the structure is compact;
If worm transmission at high speed, high efficiency.
5) planetary gear reducer
With a range of high transmission efficiency, transmission ratio, transmission power is 12 w ~ 50000 kw, small volume and weight
3.common types of reducer
1) the main characteristics of worm gear and worm reducer is a reverse self-locking function, can have a large reduction ratio, the input shaft and output shaft is not in the same axis, is not in the same plane. But generally larger, transmission efficiency is not high, the accuracy is not high.
2) harmonic reducer harmonic drive is to use the elastic deformation of flexible components controlled to transfer movement and power, small size, high precision, but the disadvantage is that soft wheel life is limited, don't impact resistance, rigidity compared with metal parts. Input speed cannot be too high.
3) planetary gear reducer, its advantage is more compact in structure, return clearance is small, high precision, long service life, rated output torque can do a lot of. But the price a little expensive. Reducer: in short, generally after the machine power in design and manufacture, the rated power will not change, at this time, the greater the speed, the smaller is the torque (or torque); Speed is smaller, the greater the torque.
The transmission ratio distribution principle
1. to make the bearing capacity of transmission at all levels are equal;
2. make all levels of transmission gear oil immersion depth is roughly similar in;
3.minimize the reducer for the shape of the size or weight, etc
Model selection
As far as possible choose close to ideal reduction ratio:
Reduction ratio = / servo motor speed reducer output shaft speed
Torque calculation:
For the life of the reducer, torque calculation is very important, and should pay attention to the maximum torque value of the acceleration (TP), which is super
Maximum load torque of reducer.
Apply power is usually the servo on market model for power, the applicability of the speed reducer is very high, can remain above 1.2 coefficient of work, but in use can also with their own needs to decide:
There are two main points:
A. choose servo motor output maximum diameter of axle diameter of axle is not greater than form.
B. If the computed torque, rotational speed can meet the normal operation, but in the net output servo have insufficient phenomenon, we can in the motor drive, do current limit control, or on the mechanical shaft torque protection, it is very necessary.
Installation method
The correct installation, use and maintenance of the reducer, it is an important link in ensure the normal operation of machinery and equipment. When you install reducer, therefore, please be sure to use related matters in strict accordance with the following installation, assembly and use seriously.
The first step is to install before confirm the motor and reducer are intact, and strict inspection of motor and reducer connected each part size matches, here is the positioning convex table of the machine, input shaft and gear reducer groove size and tolerance, etc.
The second step is to unscrew the gear reducer dustproof holes on flange lateral screw, adjust the clamping ring dustproof holes and side holes to make it align with each other, and insert the socket head screw. After taking the motor shaft key.
The third step is to connect the motor and the reducer nature. Connection must be to ensure the output gear reducer input shaft and motor shaft concentricity is consistent, and the outer flange is parallel. Such as concentricity is inconsistent, can lead to broken motor shaft or reducer gear wear and tear.
Check the maintenance
Different lubricant mixed ban each other. Oil level screw, oil drain plug and the location of the ventilator is determined by the installation position. Their relative position refer to the installation drawing to determine that speed reducer.
One, the oil level check
Cut off the power supply, prevent to get an electric shock! Waiting for reducer cooling!
Remove the oil level screw check filled with oil.
Install the oil level screw.
Second, the check of oil
Cut off the power supply, prevent to get an electric shock! Waiting for reducer cooling!
Open the oil plug, pick up sample.
Check the oil viscosity index
- if oil significantly turbidity, it is recommended that the replacement as soon as possible.
To bring oil level screw speed reducer
- check the oil level, whether qualified
- the installation of oil level screw
3.the oil replacement
After cooling oil viscosity increases with difficulty, reducer should be under the running temperature oil change.
Cut off the power supply, prevent to get an electric shock! Waiting for reducer cooled down no burning danger!
Note: when an oil change speed reducer should still keep warm.
Under the oil drain screw one by oil pan.
Open the oil level screw, ventilator and oil drain plug.
All the oil out.
Install drain plug.
Injection with brand new oil.
Oil shall conform to the installation location.
Check the oil level in the oil level screw.
Tighten the oil level screw and ventilator.
Failure to solve
Speed reducer leakage oil cause analysis and solution
Analysis of the causes
1.the pressure inside the tank
In closed reducer, each pair of gears meshing friction will emit heat, according to the Boyle trails by specific law, as the lengthen of running time, the deceleration box temperature gradually raised, and the reduction volume inside the case, so the pressure increase, in the case of lubricating oil splash, sprinkle on the inner wall of the deceleration box. Because the permeability of oil is strong, the overall pressure, which a seal is lax and the oil bleeding out from where.
2.the structure of the speed reducer design is not reasonable cause oil leakage
Such as design of reducer without ventilation hood, pressure reducer can not be achieved, in the pressure more and more high, oil leakage occurs.
3.a(chǎn)mount to much
Reducer in the process of operation, oil pool was badly agitation, lubricating oil splash around in the machine, if the amount is overmuch, make a lot of the place such as lubricating oil accumulation in the shaft seal, joint surface and lead to leakage.
4.improper maintenance technology
In equipment maintenance, due to the combined surface dirt removal is not complete, or sealant improper selection, seal, not timely replacement of seals, etc way can also cause oil leakage.
Treatment scheme
Governance using polymer composite materials to repair speed reducer leakage oil, polymer composite materials based on polymer, metal or ceramic powder, fiber and other materials for, under the action of curing agent, curing catalyst of composite materials. All kinds of material in performance from each other each other, to produce synergistic effect, the comprehensive performance is better than the original ingredients of composite materials. Have extremely strong sticky relay, mechanical properties, and chemical corrosion resistance and other performance, and therefore is widely used in metal equipment, mechanical wear, scratches, pits, cracks, leakage, repair such as casting sand holes, and chemistry of chemical storage tank, reaction tank, pipe anti-corrosion protection and restoration. For reducer static seal leakage point can use the ka wah polymer composite materials and technology field leakage of governance, without disassembly, polymer composite materials in the leakage of external governance, save time and effort, the effect is immediate, the product has excellent adhesion, oil resistance, and 350% of the tensile strength, overcome the impact of reducer vibration, well solved for many years for the enterprise is unable to solve the problem. If reducer running in static seal leak, the oil level of emergency repairing adhesive available surface engineering technologies NianDu, so as to achieve the aim of eliminate oil leakage.
Development trend
1.high level and high performance. Widely used cylindrical gear carburizing and quenching, grinding, carrying capacity increased by more than 4 times, small volume, light weight, low noise, high efficiency and high reliability.
2.modular combination design. Basic parameters using priority number, size, parts versatility and interchangeability, series of easy to expand and newer, conducive to tissue mass production and reduce cost.
3.style diversification, variant design. To get rid of the traditional single base installation, added a hollow shaft mounted, floating bearing base, motor and reducer one-piece, different types, such as multiple mounting surface