(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 理

上傳人:Sc****h 文檔編號:119136100 上傳時間:2022-07-13 格式:DOCX 頁數(shù):10 大?。?.47MB
收藏 版權(quán)申訴 舉報 下載
(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 理_第1頁
第1頁 / 共10頁
(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 理_第2頁
第2頁 / 共10頁
(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 理_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 理》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 理(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題突破練16 熱點小專題二 球與多面體的內(nèi)切、外接 一、選擇題 1.體積為8的正方體的頂點都在同一球面上,則該球的表面積為(  ) A.12π B.323π C.8π D.4π 2. (2019江西九江一模,文9)《九章算術(shù)》卷第五《商功》中,有“賈令芻童,上廣一尺,袤二尺,下廣三尺,袤四尺,高一尺.”,意思是:“假設(shè)一個芻童,上底面寬1尺,長2尺;下底面寬3尺,長4尺,高1尺(如圖).”(注:芻童為上下底面為相互平行的不相似長方形,兩底面的中心連線與底面垂直的幾何體),若該幾何體所有頂點在一球的表面上,則該球體的表面積為(  ) A.46π平方尺 B.41π平方尺 C.4

2、0π平方尺 D.36π平方尺 3. (2019山東濟寧一模,理9)《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”.已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的體積為(  ) A.823π B.6π C.6π D.8π 4.已知直三棱柱ABC-A1B1C1的6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的直徑為(  ) A.13 B.410 C.210 D.217 5.(2019山東濰坊二模,理8)一個各面均為直角三角形的四面體有三條棱長為2,則該四面體外接球的表面積為(  ) A.6π B.12π C.32π D.

3、48π 6.(2019北京朝陽一模,理7改編)某三棱錐的三視圖如圖所示(網(wǎng)格紙上小正方形的邊長為1),則該三棱錐的外接球的體積為(  ) A.4π B.23π C.63π D.43π 7.已知A,B是球O的球面上兩點,∠AOB=90°,C為該球面上的動點.若三棱錐O-ABC體積的最大值為36,則球O的表面積為(  ) A.36π B.64π C.144π D.256π 8.如圖②,需在正方體的盒子內(nèi)鑲嵌一個小球,使得鑲嵌后三視圖均為圖①所示,且面A1C1B截得小球的截面面積為2π3,則該小球的體積為(  ) A.π6 B.4π3 C.32π3 D.82π3 9.已知A,B

4、,C,D是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,則該球的體積為(  ) A.323π B.48π C.24π D.16π 10. (2019四川第二次診斷,理10)已知一個幾何體的正視圖,側(cè)視圖和俯視圖均是直徑為10的圓(如圖),這個幾何體內(nèi)接一個圓錐,圓錐的體積為27π,則該圓錐的側(cè)面積為(  ) A.910π B.1211π C.1017π D.403π3 11. (2019山西呂梁一模,文12)四棱錐S-ABCD中,底面ABCD為矩形,AD=4,AB=2,且SA+SD=8,當(dāng)該四棱錐的體積最大時,其外接球的表面積為(  

5、) A.20π B.25π C.803π D.763π 12.已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為(  ) A.26 B.36 C.23 D.22 二、填空題 13.(2019四川成都二模,理14)已知三棱錐A-BCD的四個頂點都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=2,則球O的表面積為     .? 14.(2019河北唐山一模,理15)在四面體ABCD中,AB=BC=1,AC=2,且AD⊥CD,該四面體外接球的表面積為     .? 15. (2019湖南六校聯(lián)

6、考,理15)在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P-ABCD為陽馬,側(cè)棱PA⊥底面ABCD,且PA=3,BC=AB=4,設(shè)該陽馬的外接球半徑為R,內(nèi)切球半徑為r,則Rr=     .? 16.已知三棱錐S-ABC的所有頂點都在球O的球面上,SC是球O的直徑,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱錐S-ABC的體積為9,則球O的表面積為. 參考答案 專題突破練16 熱點小專題二  球與多面體的內(nèi)切、外接 1.A 解析設(shè)正方體的棱長為a,由a3=8,得a=2.由題意可知,正方體的體對角線為球的直徑,故2r=3a

7、2,則r=3.所以該球的表面積為4π×(3)2=12π,故選A. 2.B 解析由已知得球心在幾何體的外部,設(shè)球心到幾何體下底面的距離為x,則R2=x2+522=(x+1)2+522,解得x=2,∴R2=414,∴該球的表面積S=41π.故選B. 3.A 解析根據(jù)幾何體的三視圖可知幾何體為底面為腰長為2的直角等腰三角形,高為2的直三棱柱.設(shè)外接球的半徑為R,則(2R)2=(2)2+(2)2+22,解得R=2,所以V=43π(2)3=823π.故選A. 4.A 解析由題意可知,直三棱柱ABC-A1B1C1的外接球O的半徑R=32+42+1222=132,故球O的直徑為13.故選A. 5.B

8、 解析如圖,在四面體ABCD中,∠ABD=∠ABC=∠BCD=∠ACD=90°,AB=BC=CD=2,可得BD=22,AD=23,設(shè)AD的中點為O,連接OB,OC,則OB=OC=OA=OD,所以AD的中點O即為外接球的球心,故球O半徑為3,其表面積為12π,故選B. 6.D 解析由三視圖得該幾何體的直觀圖如圖所示. 將該三棱錐補形為正方體,如圖所示. 所以該三棱錐的外接球的體積等于補形后正方體外接球的體積,所以球的直徑等于正方體的體對角線長,即2R=22+22+22=23,所以球的體積為V=43π×(3)3=43π. 7.C 解析由△AOB的面積確定可知,若三棱錐O-ABC

9、的底面OAB上的高最大,則其體積最大.因為高最大為半徑R,所以VO-ABC=13×12R2×R=36,解得R=6,故S球=4πR2=144π. 8.B 解析設(shè)正方體盒子的棱長為2a,則內(nèi)切球的半徑為a,平面A1BC1是邊長為22a的正三角形,且球與以點B1為公共點的三個面的切點恰為△A1BC1三邊的中點,∴所求截面的面積是該正三角形的內(nèi)切圓的面積,則由圖得,△A1BC1內(nèi)切圓的半徑是2a×tan30°=63a,則所求的截面圓的面積是π·63a2=2π3a2=2π3,故a=1,∴該小球的體積為V球=4π3×13=4π3. 9.A 解析由題意畫出幾何體的直觀圖如圖,把A,B,C,D擴展為三棱柱

10、,上下底面中心的中點與A的距離為球的半徑,AD=2AB=6,OE=3,△ABC是正三角形,AE=23×32×3=3,AO=32+(3)2=23.故所求球的體積為43π×(23)3=323π. 10.A 解析幾何體的軸截面如圖所示,設(shè)圓錐的底面半徑為r,由題意可得13×π×r2×(25-r2+5)=27π,解得r=3,所以該圓錐的側(cè)面積為12×6π×32+92=910π.故選A. 11.D 解析當(dāng)點S到底面ABCD的距離最大時,四棱錐的體積最大,這時△SAD為等邊三角形,S到底面ABCD的距離為23且平面SAD⊥平面ABCD.設(shè)球心O到平面ABCD的距離OE=x,則由OD=OS,得x

11、2+5=(23-x)2+1,所以x=23,所以四棱錐外接球的半徑R=x2+5=193,所以四棱錐外接球的表面積為S=4πR2=763π.故選D. 12.A 解析∵SC是球O的直徑, ∴∠CAS=∠CBS=90°. ∵BA=BC=AC=1,SC=2, ∴AS=BS=3. 取AB的中點D,顯然AB⊥CD,AB⊥SD,∴AB⊥平面SCD. 在△CDS中,CD=32,DS=112,SC=2,利用余弦定理可得cos∠CDS=CD2+SD2-SC22CD·SD=-133, ∴sin∠CDS=4233, ∴S△CDS=12×32×112×4233=22, 故V=VB-CDS+VA-CD

12、S=13×S△CDS×BD+13S△CDS×AD=13S△CDS×BA=13×22×1=26. 13.3π 解析(法一)如圖, 取CD的中點E,連接BE,可得BE=32×2=62, 設(shè)等邊三角形BCD的中心為G,則BG=23×62=63, ∴AG=12-(63)?2=33. 設(shè)三棱錐A-BCD的外接球的半徑為R,則R2=BG2+OG2,即R2=632+33-R2,解得R=32. ∴球O的表面積為4πR2=3π. (法二)∵AB=AC=AD=1,BC=CD=BD=2, ∴由勾股定理的逆定理得三棱錐的三個側(cè)面都是全等的直角三角形,將三棱錐補形為正方體,則其外接球的直徑為正方體的

13、體對角線, ∴2R=12+12+12=3, 故球O的表面積為4πR2=3π. 14.2π 解析如圖所示,由AB=BC=1,AC=2,得AB⊥BC,所以△ABC和△DAC都是直角三角形.△ABC外接圓的圓心是AC的中點,△DAC外接圓的圓心也是AC的中點,且兩個三角形的外接圓都是球的大圓,所以球半徑R=12AC=22,所以S球=4πR2=2π. 15.412 解析易知該陽馬補形所得到的長方體的體對角線為外接球的直徑,所以(2R)2=AB2+AD2+AP2=42+42+32=41,R=412.因為側(cè)棱PA⊥底面ABCD,且底面為正方形,所以內(nèi)切球O1在側(cè)面PAD內(nèi)的正視圖是△PAD的內(nèi)切圓,則內(nèi)切球半徑為1,故Rr=412. 16.36π 解析取SC的中點O,連接OA,OB. 因為SA=AC,SB=BC,所以O(shè)A⊥SC,OB⊥SC. 因為平面SAC⊥平面SBC,且OA?平面SAC, 所以O(shè)A⊥平面SBC.設(shè)OA=r,則VA-SBC=13×S△SBC×OA=13×12×2r×r×r=13r3, 所以13r3=9,解得r=3. 所以球O的表面積為4πr2=36π. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!