749 瓶塞注射模設(shè)計(jì)【全套14張CAD圖+文獻(xiàn)翻譯+說(shuō)明書(shū)】
749 瓶塞注射模設(shè)計(jì)【全套14張CAD圖+文獻(xiàn)翻譯+說(shuō)明書(shū)】,全套14張CAD圖+文獻(xiàn)翻譯+說(shuō)明書(shū),749,瓶塞注射模設(shè)計(jì)【全套14張CAD圖+文獻(xiàn)翻譯+說(shuō)明書(shū)】,瓶塞,注射,設(shè)計(jì),全套,14,cad,文獻(xiàn),翻譯,說(shuō)明書(shū),仿單
課題任務(wù)書(shū)
指導(dǎo)教師
學(xué)生姓名
課題名稱(chēng)
瓶塞注射模設(shè)計(jì)
內(nèi)容及任務(wù)
根據(jù)所給定的塑料產(chǎn)品,設(shè)計(jì)注射模。內(nèi)容包括:塑件的形狀尺寸計(jì)算,分型面的選擇,澆注系統(tǒng)的設(shè)計(jì),導(dǎo)向機(jī)構(gòu)的設(shè)計(jì),脫模機(jī)構(gòu)的設(shè)計(jì),溫控系統(tǒng)設(shè)計(jì)等。
擬達(dá)到的要求或技術(shù)指標(biāo)
1.設(shè)計(jì)總要求:
(1)、盡量選用標(biāo)準(zhǔn)模架。
(2)、保證規(guī)定的生產(chǎn)率和高質(zhì)量的塑膠制品的同時(shí),力求模具成本低、壽命長(zhǎng)。
(3)、設(shè)計(jì)的塑料模必須保證操作維護(hù)安全、方便,與注射機(jī)能夠匹配。
(4)、在能夠生產(chǎn)出性能、特性、質(zhì)量符合要求的前提下,盡量降低制品的后加工成本。
(5)、便于搬運(yùn)、安裝、緊固到注射機(jī)上,并且方便、可靠。
(6)、保證模具強(qiáng)度前提下,注意外形美觀,各部分比例協(xié)調(diào)。
2、設(shè)計(jì)圖紙
模具總裝圖一張、動(dòng)、定模、澆口套、型芯等所有非標(biāo)準(zhǔn)零件圖及電子文件(圖幅總量2~2.5張A0)。
3、設(shè)計(jì)說(shuō)明書(shū)(要求不少于1.2萬(wàn)字,)
(1)、資料數(shù)據(jù)充分,并標(biāo)明數(shù)據(jù)出處。
(2)、計(jì)算過(guò)程詳細(xì)、完全。
(3)、公式的字母含義應(yīng)標(biāo)明,有時(shí)還應(yīng)標(biāo)注公式的出處。
(4)、內(nèi)容條理清楚,按步驟書(shū)寫(xiě)。
(5)、說(shuō)明書(shū)要求用計(jì)算機(jī)打印出來(lái)。
4、整個(gè)設(shè)計(jì)資料包括:全套圖紙、設(shè)計(jì)計(jì)算說(shuō)明書(shū)、設(shè)計(jì)任務(wù)書(shū)、設(shè)計(jì)筆記、畢業(yè)設(shè)計(jì)體會(huì)。
進(jìn)度安排
起止日期
工作內(nèi)容
備注
2011年2月~至6月
1布置任務(wù),方案設(shè)計(jì)
2設(shè)計(jì)計(jì)算和工藝編制
3結(jié)構(gòu)設(shè)計(jì)和繪圖
4編寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)
5畢業(yè)答辯
主要參考資料
[1] 葉久新,王群主編.塑料制品成型及模具設(shè)計(jì)[M].湖南科學(xué)技術(shù)出版社,2005,1-156.
[2]黃毅宏、李明輝主編模具制造工藝.北京:機(jī)械工業(yè)出版社,1999.6
[3]. 何忠保,陳曉華,王秀英主編.典型零件模具圖冊(cè).北京:機(jī)械工業(yè)出版社,2000.9
[4]. 李紹林,馬長(zhǎng)福主編.實(shí)用模具技術(shù)手冊(cè).上海:上??茖W(xué)技術(shù)文獻(xiàn)出版社,2000.6
[5]. 王樹(shù)勛主編.注塑模具設(shè)計(jì)與制造實(shí)用技術(shù).廣州:華南理工大學(xué)出版社,1996.1
[6]. 李紹林主編.塑料·橡膠成型模具設(shè)計(jì)手冊(cè). 北京:機(jī)械工業(yè)出版社,2000.9
[7] 劉小寧,張永?。可w注射模設(shè)計(jì)[J].模具工業(yè),2006,32(5):44-46.
[8] 伍先明,王群,龐佑霞,張厚安編著[M].國(guó)防工業(yè)出版社,2006.
[9] 劉小寧,張永?。可w注射模設(shè)計(jì)[J].模具工業(yè),2006,32(5):44-46.
[10] 付偉,張海,曹愛(ài)文.基于Pro/E的分模方法及技巧 [J].模具工業(yè),2006,32(5):65-70.
[11] 杜智敏,何華妹 郭擎強(qiáng)編著.Pro/ENGINEER野火版塑料注射模具設(shè)計(jì)實(shí)例[M].機(jī)械工業(yè)出版社,2005.
[12] 付宏生,劉京華編著.注塑制品與注塑模具設(shè)計(jì)[M].化學(xué)工業(yè)出版社,2003.
[13] 模具實(shí)用技術(shù)叢書(shū)編委會(huì)編.塑料模具設(shè)計(jì)制造與應(yīng)用實(shí)例[M].機(jī)械工業(yè)出版社,2002,1-230.
教研室
意見(jiàn)
年 月 日
系主管領(lǐng)導(dǎo)意見(jiàn)
年 月 日
附表五
開(kāi)題報(bào)告
題 目
瓶塞注射模設(shè)計(jì)
學(xué)生姓名
班級(jí)學(xué)號(hào)
專(zhuān)業(yè)
一、課題的目的和意義:
模具工業(yè)是國(guó)民經(jīng)濟(jì)的基礎(chǔ)工業(yè),被稱(chēng)為“工業(yè)之母”。 而塑料模具又是整個(gè)模具行業(yè)的一朵奇葩,其發(fā)展極為迅速。注塑模具是其中發(fā)展較快的種類(lèi),因此,研究注塑模具對(duì)了解塑料產(chǎn)品的生產(chǎn)過(guò)程和提高產(chǎn)品質(zhì)量有很大意義。
注塑成型是現(xiàn)代塑料工業(yè)中的一種重要的加工方法 ,世界上注塑模的產(chǎn)量約占塑料成型模具總產(chǎn)量的 50 %以上 ,尤其是家電盒型注塑產(chǎn)品需求量不斷增加,注塑成型能一次成型形狀復(fù)雜、尺寸精確的制品 ,適合高效率、大批量的生產(chǎn)方式 ,以發(fā)展成為熱塑性塑料和部分熱固性塑料最主要的成型加工方法 ,注塑模具的設(shè)計(jì)與制造主要依賴(lài)于設(shè)計(jì)者的經(jīng)驗(yàn)和技師的制造技藝 ,一般需要經(jīng)過(guò)反復(fù)調(diào)試和修模才能正式投入生產(chǎn) ,這種傳統(tǒng)的生產(chǎn)方式不僅使產(chǎn)品的生產(chǎn)周期延長(zhǎng) ,生產(chǎn)成本增加 ,而且難以保證產(chǎn)品的質(zhì)量,要解決這些問(wèn)題 ,必須以科學(xué)分析的方法 ,研究各個(gè)成型過(guò)程的關(guān)鍵技術(shù),塑料注塑成型是一個(gè)復(fù)雜的加工與物理過(guò)程 ,為實(shí)現(xiàn)注塑產(chǎn)品的更新?lián)Q代 ,提高企業(yè)的競(jìng)爭(zhēng)能力 ,必須進(jìn)行注塑模具設(shè)計(jì)與制造及成型過(guò)程分析的 CAD/ CAM/ CAE集成技術(shù)的研究國(guó)外注塑模 CAD/ CAM/ CAE 技術(shù)研究的成果有關(guān)統(tǒng)計(jì)數(shù)據(jù)表明:采用注塑模 CAD/ CAE/CAM 技術(shù)能使設(shè)計(jì)時(shí)間縮短 50 %,制造時(shí)間縮短 30 %,成本下降 10 %,塑料節(jié)省 7 % 注塑模計(jì)算機(jī)模擬技術(shù)正朝著與 CAD/ CAE無(wú)縫整體集成化方向發(fā)展 ,注塑 CAD 所構(gòu)造的幾何模型為實(shí)現(xiàn)注塑模 CAE技術(shù)提供了基本的幾何拓?fù)湫畔⒑吞卣餍畔?,注塑模 CAE的目標(biāo)是通過(guò)對(duì)塑料材料性能的研究和注射成型工藝過(guò)程的模擬和分析 ,為塑料制品的設(shè)計(jì)、材料選擇、模具設(shè)計(jì)、注射成型工藝的制定及注射成型工藝過(guò)程的控制提供科學(xué)依據(jù) 。 現(xiàn)時(shí)國(guó)際上占主流地位的注射模CAD軟件有Pro/E、I-DEAS、UG、SolidWorks等;結(jié)構(gòu)分析軟件有MSC、Analysis等;注射過(guò)程數(shù)值分析軟件有MoldFlow等;數(shù)控加工軟件有MasterCAM、Cimatron等。
次選題能全面反映培養(yǎng)目標(biāo),與本專(zhuān)業(yè)密切相關(guān),能結(jié)合社會(huì)生產(chǎn)實(shí)際或科研實(shí)踐,工程性強(qiáng),現(xiàn)實(shí)意義明顯,具有相當(dāng)?shù)南冗M(jìn)性、深度和難度。在本次手機(jī)模具設(shè)計(jì)畢業(yè)設(shè)計(jì)中,我采取將模具設(shè)計(jì)內(nèi)容同CAD/CAM/CAE緊密結(jié)合在一起,通過(guò)先進(jìn)的軟件仿真,可以隨時(shí)發(fā)現(xiàn)自己在每一步設(shè)計(jì)中的不合理處,會(huì)找出各種解決方案讓設(shè)計(jì)趨于合理,同時(shí)掌握了最先進(jìn)的設(shè)計(jì),加工及分析技術(shù),提高了學(xué)生的學(xué)習(xí)興趣和創(chuàng)新能力,使畢業(yè)設(shè)計(jì)真正成為了學(xué)生實(shí)際工作前的一次全過(guò)程模擬。
通過(guò)本次設(shè)計(jì),應(yīng)使我們?cè)谙率龌灸芰ι系玫脚囵B(yǎng)和鍛煉:①塑料制品的設(shè)計(jì)及成型工藝的選擇;②一般塑料制品成型模具的設(shè)計(jì)能力;③塑料制品的質(zhì)量分析及工藝改進(jìn)、塑料模具結(jié)構(gòu)改進(jìn)設(shè)計(jì)的能力;④了解模具設(shè)計(jì)的常用商業(yè)軟件以及同實(shí)際設(shè)計(jì)的結(jié)合。
二、文獻(xiàn)綜述
1、中國(guó)模具的發(fā)展現(xiàn)狀
中國(guó)模具的發(fā)展現(xiàn)狀改革開(kāi)放帶了我國(guó)的經(jīng)濟(jì)進(jìn)入高速發(fā)展的時(shí)期,模具的市場(chǎng)的需求量也進(jìn)一步的增加。模具行業(yè)也一直以15%左右的增速再發(fā)展。因此帶來(lái)的模具工業(yè)企業(yè)的所有制成分的巨大變化,一些國(guó)有專(zhuān)業(yè)模具廠也如雨后春筍般的建立起來(lái),同時(shí)也帶來(lái)了以集體、獨(dú)資、私營(yíng)和合資等形式的快速發(fā)展。
近年許多模具企業(yè)加大了用于技術(shù)進(jìn)步的投資力度,將技術(shù)進(jìn)步視為企業(yè)發(fā)展的重要?jiǎng)恿ΑR恍﹪?guó)內(nèi)模具企業(yè)已普及了二維CAD,并陸續(xù)開(kāi)始使用UG、Pro/Engineer、I-DEAS、Euclid-IS等國(guó)際通用軟件,個(gè)別廠家還引進(jìn)了Moldflow、C-Flow、DYNAFORM、Optris和MAGMASOFT等CAE軟件,并成功應(yīng)用于沖壓模的設(shè)計(jì)中。以汽車(chē)覆蓋件模具為代表的大型沖壓模具的制造技術(shù)已取得很大進(jìn)步,東風(fēng)汽車(chē)公司模具廠、一汽模具中心等模具廠家已能生產(chǎn)部分轎車(chē)覆蓋件模具。此外,許多研究機(jī)構(gòu)和大專(zhuān)院校開(kāi)展模具技術(shù)的研究和開(kāi)發(fā)。經(jīng)過(guò)多年的努力,在模具CAD/CAE/CAM技術(shù)方面取得了顯著進(jìn)步;在提高模具質(zhì)量和縮短模具設(shè)計(jì)制造周期等方面做出了貢獻(xiàn)。
2、中國(guó)模具的發(fā)展方向
模具技術(shù)的發(fā)展應(yīng)該為適應(yīng)模具產(chǎn)品“交貨期短”、“精度高”、“質(zhì)量好”、“價(jià)格低”的要求服務(wù)。達(dá)到這一要求急需發(fā)展如下幾項(xiàng):
(1)全面推廣CAD/CAM/CAE技術(shù)模具CAD/CAM/CAE技術(shù)是模具設(shè)計(jì)制造的發(fā)展方向。隨著微機(jī)軟件的發(fā)展和進(jìn)步,普及CAD/CAM/CAE技術(shù)的條件已基本成熟,各企業(yè)將加大CAD/CAM技術(shù)培訓(xùn)和技術(shù)服務(wù)的力度;進(jìn)一步擴(kuò)大CAE技術(shù)的應(yīng)用范圍。計(jì)算機(jī)和網(wǎng)絡(luò)的發(fā)展正使CAD/CAM/CAE技術(shù)跨地區(qū)、跨企業(yè)、跨院所地在整個(gè)行業(yè)中推廣成為可能,實(shí)現(xiàn)技術(shù)資源的重新整合,使虛擬制造成為可能。
(2)高速銑削加工國(guó)外近年來(lái)發(fā)展的高速銑削加工,大幅度提高了加工效率,并可獲得極高的表面光潔度。另外,還可加工高硬度模塊,還具有溫升低、熱變形小等優(yōu)點(diǎn)。高速銑削加工技術(shù)的發(fā)展,對(duì)汽車(chē)、家電行業(yè)中大型型腔模具制造注入了新的活力。目前它已向更高的敏捷化、智能化、集成化方向發(fā)展。
(3)模具掃描及數(shù)字化系統(tǒng)高速掃描機(jī)和模具掃描系統(tǒng)提供了從模型或?qū)嵨飹呙璧郊庸こ銎谕哪P退璧闹T多功能,大大縮短了模具的在研制制造周期。有些快速掃描系統(tǒng),可快速安裝在已有的數(shù)控銑床及加工中心上,實(shí)現(xiàn)快速數(shù)據(jù)采集、自動(dòng)生成各種不同數(shù)控系統(tǒng)的加工程序、不同格式的CAD數(shù)據(jù),用于模具制造業(yè)的“逆向工程”。模具掃描系統(tǒng)已在汽車(chē)、摩托車(chē)、家電等行業(yè)得到成功應(yīng)用,相信在“十五”期間將發(fā)揮更大的作用。
(4)電火花銑削加工電火花銑削加工技術(shù)也稱(chēng)為電火花創(chuàng)成加工技術(shù),這是一種替代傳統(tǒng)的用成型電極加工型腔的新技術(shù),它是有高速旋轉(zhuǎn)的簡(jiǎn)單的管狀電極作三維或二維輪廓加工(像數(shù)控銑一樣),因此不再需要制造復(fù)雜的成型電極,這顯然是電火花成形加工領(lǐng)域的重大發(fā)展。國(guó)外已有使用這種技術(shù)的機(jī)床在模具加工中應(yīng)用。預(yù)計(jì)這一技術(shù)將得到發(fā)展。
(5)提高模具標(biāo)準(zhǔn)化程度我國(guó)模具標(biāo)準(zhǔn)化程度正在不斷提高,估計(jì)目前我國(guó)模具標(biāo)準(zhǔn)件使用覆蓋率已達(dá)到30%左右。國(guó)外發(fā)達(dá)國(guó)家一般為80%左右。
(6)優(yōu)質(zhì)材料及先進(jìn)表面處理技術(shù)選用優(yōu)質(zhì)鋼材和應(yīng)用相應(yīng)的表面處理技術(shù)來(lái)提高模具的壽命就顯得十分必要。模具熱處理和表面處理是否能充分發(fā)揮模具鋼材料性能的關(guān)鍵環(huán)節(jié)。模具熱處理的發(fā)展方向是采用真空熱處理。模具表面處理除完善應(yīng)發(fā)展工藝先進(jìn)的氣相沉積(TiN、TiC等)、等離子噴涂等技術(shù)。
(7)模具研磨拋光將自動(dòng)化、智能化模具表面的質(zhì)量對(duì)模具使用壽命、制件外觀質(zhì)量等方面均有較大的影響,研究自動(dòng)化、智能化的研磨與拋光方法替代現(xiàn)有手工操作,以提高模具表面質(zhì)量是重要的發(fā)展趨勢(shì)。
(8)模具自動(dòng)加工系統(tǒng)的發(fā)展這是我國(guó)長(zhǎng)遠(yuǎn)發(fā)展的目標(biāo)。模具自動(dòng)加工系統(tǒng)應(yīng)有多臺(tái)機(jī)床合理組合;配有隨行定位夾具或定位盤(pán);有完整的機(jī)具、刀具數(shù)控庫(kù);有完整的數(shù)控柔性同步系統(tǒng);有質(zhì)量監(jiān)測(cè)控制系統(tǒng)。
我國(guó)模具與發(fā)達(dá)國(guó)家企業(yè)之間的差距不小,因此要發(fā)揮整體優(yōu)勢(shì)和綜合競(jìng)爭(zhēng)力,要加強(qiáng)統(tǒng)籌協(xié)調(diào)、完善合作機(jī)制,創(chuàng)造性地工作。也需要加大對(duì)模具相關(guān)專(zhuān)業(yè)人才的綜合素質(zhì)培訓(xùn)投入。
三、設(shè)計(jì)內(nèi)容與步驟
1.品原料是ABS,采用注塑成型模具。
2.悉注塑模具設(shè)計(jì)的流程,掌握注塑模具設(shè)計(jì)的基本原理和設(shè)計(jì)方法,能用模具設(shè)計(jì)軟件,對(duì)塑件進(jìn)行模具設(shè)計(jì)。
3.成模具的各個(gè)零件的設(shè)計(jì)。
4.計(jì)完成后,對(duì)設(shè)計(jì)的各參數(shù)進(jìn)行校核,以便能保證使用要求。
5.個(gè)模具設(shè)計(jì)完成后,還要進(jìn)行試模,并針對(duì)性的進(jìn)行修改。
四、繪圖任務(wù)
(1) 模具總裝配圖
(2) 模具零件圖
(3) 模具總成三維圖(可選)
(4) 模具主要零件三維圖(可選)
五、設(shè)計(jì)過(guò)程進(jìn)度計(jì)劃
第1周 完成畢業(yè)設(shè)計(jì)的選題和開(kāi)題報(bào)告;
第2-3周 進(jìn)行畢業(yè)實(shí)習(xí)及調(diào)研;
第4周 進(jìn)行工藝及結(jié)構(gòu)設(shè)計(jì);
第5周 繪制裝配圖和零件圖;
第6周 對(duì)整個(gè)設(shè)計(jì)進(jìn)行合理性檢查;
第7-9周 撰寫(xiě)設(shè)計(jì)說(shuō)明書(shū)及畢業(yè)答辯的準(zhǔn)備;
第10-11周 畢業(yè)設(shè)計(jì)答辯。
六、參考文獻(xiàn)
[1] 葉久新,王群主編.塑料制品成型及模具設(shè)計(jì)[M].湖南科學(xué)技術(shù)出版社,2005,1-156.
[2]黃毅宏、李明輝主編模具制造工藝.北京:機(jī)械工業(yè)出版社,1999.6
[3]. 何忠保,陳曉華,王秀英主編.典型零件模具圖冊(cè).北京:機(jī)械工業(yè)出版社,2000.9
[4]. 李紹林,馬長(zhǎng)福主編.實(shí)用模具技術(shù)手冊(cè).上海:上??茖W(xué)技術(shù)文獻(xiàn)出版社,2000.6
[5]. 王樹(shù)勛主編.注塑模具設(shè)計(jì)與制造實(shí)用技術(shù).廣州:華南理工大學(xué)出版社,1996.1
[6]. 李紹林主編.塑料·橡膠成型模具設(shè)計(jì)手冊(cè). 北京:機(jī)械工業(yè)出版社,2000.9
[7] 劉小寧,張永俊.瓶蓋注射模設(shè)計(jì)[J].模具工業(yè),2006,32(5):44-46.
[8] 伍先明,王群,龐佑霞,張厚安編著[M].國(guó)防工業(yè)出版社,2006.
[9] 劉小寧,張永俊.瓶蓋注射模設(shè)計(jì)[J].模具工業(yè),2006,32(5):44-46.
[10] 付偉,張海,曹愛(ài)文.基于Pro/E的分模方法及技巧 [J].模具工業(yè),2006,32(5):65-70.
[11] 杜智敏,何華妹 郭擎強(qiáng)編著.Pro/ENGINEER野火版塑料注射模具設(shè)計(jì)實(shí)例[M].機(jī)械工業(yè)出版社,2005.
[12] 付宏生,劉京華編著.注塑制品與注塑模具設(shè)計(jì)[M].化學(xué)工業(yè)出版社,2003.
[13] 模具實(shí)用技術(shù)叢書(shū)編委會(huì)編.塑料模具設(shè)計(jì)制造與應(yīng)用實(shí)例[M].機(jī)械工業(yè)出版社,2002,1-230.
指導(dǎo)教師批閱意見(jiàn)
指導(dǎo)教師(簽名): 年 月 日
6
A technical note on the characterization of electroformed nickel shells for their application to injection molds
——Universidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica, Spain
Abstract
The techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold.
Keywords: Electroplating; Electroforming; Microstructure; Nickel
Article Outline
1. Introduction
2. Manufacturing process of an injection mold
3. Obtaining an electroformed shell: the equipment
4. Obtained hardness
5. Metallographic structure
6. Internal stresses
7. Test of the injection mold
8. Conclusions
References
1. Introduction
One of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces [1], [2] and [3], however, it is true that it is where they have developed more and where they find the highest output.
This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment.
It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless [3], but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method.
2. Manufacturing process of an injection mold
The core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate [4] This mold (Fig. 1) permits the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventional tools.
The stages to obtain a core [4], according to the methodology researched in this work, are the following:
(a) Design in CAD system of the desired object.
(b) Model manufacturing in a rapid prototyping equipment (FDM system). The material used will be an ABS plastic.
(c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity).
(d) Removal of the shell from the model.
(e) Production of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes.
The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was obtained, with the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different technologies.
3. Obtaining an electroformed shell: the equipment
Electrodeposition [5] and [6] is an electrochemical process in which a chemical change has its origin within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrodes, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the circuit, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer.
The plating bath used in this work is formed by nickel sulfamate [7] and [8] at a concentration of 400?ml/l, nickel chloride (10?g/l), boric acid (50?g/l), Allbrite SLA (30?cc/l) and Allbrite 703 (2?cc/l). The selection of this composition is mainly due to the type of application we intend, that is to say, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the shell (the tests gave results, for different process conditions, not superior to 50?MPa and for optimum conditions around 2?MPa). Nevertheless, such level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluenesulfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smaller grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chloride, in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode. The boric acid acts as a pH buffer.
The equipment used to manufacture the nickel shells tested has been as follows:
? Polypropylene tank: 600?mm?×?400?mm?×?500?mm in size.
? Three teflon resistors, each one with 800?W.
? Mechanical stirring system of the cathode.
? System for recirculation and filtration of the bath formed by a pump and a polypropylene filter.
? Charging rectifier. Maximum intensity in continuous 50?A and continuous current voltage between 0 and 16?V.
? Titanium basket with nickel anodes (Inco S-Rounds Electrolytic Nickel) with a purity of 99%.
? Gases aspiration system.
Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the process have been the current density (between 1 and 22?A/dm2), the temperature (between 35 and 55?°C) and the pH, partially modifying the bath composition.
4. Obtained hardness
One of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at rather high and stable values. In Fig. 2, it can be observed the way in which for current density values between 2.5 and 22?A/dm2, the hardness values range from 540 and 580?HV, at pH 4?±?0.2 and with a temperature of 45?°C. If the pH of the bath is reduced at 3.5 and the temperature is 55?°C those values are above 520?HV and below 560?HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as internal stress because its variability may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate bath is between 200–250?HV, much lower than the one obtained in the tests. It is necessary to take into account that, for an injection mold, the hardness is acceptable starting from 300?HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290?HV), steel for integral hardening (520–595?HV), casehardened steel (760–800?HV), etc., in such a way that it can be observed that the hardness levels of the nickel shells would be within the medium–high range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important failures such as pitting.
5. Metallographic structure
In order to analyze the metallographic structure, the values of current density and temperature were mainly modified. The samples were analyzed in frontal section and in transversal section (perpendicular to the deposition). For achieving a convenient preparation, they were conveniently encapsulated in resin, polished and etched in different stages with a mixture of acetic acid and nitric acid. The etches are carried out at intervals of 15, 25, 40 and 50?s, after being polished again, in order to be observed afterwards in a metallographic microscope Olympus PME3-ADL 3.3×/10×.
Before going on to comment the photographs shown in this article, it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material (ABS), that later solidifies, is settled layer by layer. In each layer, the extruder die leaves a thread approximately 0.15?mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after. Thus, in the surface it can be observed thin lines that indicate the roads followed by the head of the machine. These lines are going to act as a reference to indicate the reproducibility level of the nickel settled. The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds: the surface texture.
The tested series are indicated in Table.
Table 1.
Tested series
Series
pH
Temperature (°C)
Current density (A/dm2)
1
4.2?±?0.2
55
2.22
2
3.9?±?0.2
45
5.56
3
4.0?±?0.2
45
10.00
4
4.0?±?0.2
45
22.22
Fig. 3 illustrates the surface of a sample of the series after the first etch. It shows the roads originated by the FDM machine, that is to say that there is a good reproducibility. It cannot be still noticed the rounded grain structure. In Fig. 4, series 2, after a second etch, it can be observed a line of the road in a way less clear than in the previous case. In Fig. 5, series 3 and 2° etch it begins to appear the rounded grain structure although it is very difficult to check the roads at this time. Besides, the most darkened areas indicate the presence of pitting by inadequate conditions of process and bath composition.
This behavior indicates that, working at a low current density and a high temperature, shells with a good reproducibility of the model and with a small grain size are obtained, that is, adequate for the required application.
If the analysis is carried out in a plane transversal to the deposition, it can be tested in all the samples and for all the conditions that the growth structure of the deposit is laminar (Fig. 6), what is very satisfactory to obtain a high mechanical resistance although at the expense of a low ductibility. This quality is due, above all, to the presence of the additives used because a nickel sulfamate bath without additives normally creates a fibrous and non-laminar structure [9]. The modification until a nearly null value of the wetting agent gave as a result that the laminar structure was maintained in any case, that matter demonstrated that the determinant for such structure was the stress reducer (Allbrite SLA). On the other hand, it was also tested that the laminar structure varies according to the thickness of the layer in terms of the current density.
6. Internal stresses
One of the main characteristic that a shell should have for its application like an insert is to have a low level of internal stresses. Different tests at different bath temperatures and current densities were done and a measure system rested on cathode flexural tensiometer method was used. A steel testing control was used with a side fixed and the other free (160?mm length, 12.7?mm width and thickness 0.3?mm). Because the metallic deposition is only in one side the testing control has a mechanical strain (tensile or compressive stress) that allows to calculate the internal stresses. Stoney model [10] was applied and was supposed that nickel substratum thickness is enough small (3?μm) to influence, in an elastic point of view, to the strained steel part. In all the tested cases the most value of internal stress was under 50?MPa for extreme conditions and 2?MPa for optimal conditions, an acceptable value for the required application. The conclusion is that the electrolitic bath allows to work at different conditions and parameters without a significant variation of internal stresses.
7. Test of the injection mold
Tests have been carried out with various representative thermoplastic materials such as PP, PA, HDPE and PC, and it has been analysed the properties of the injected parts such as dimensions, weight, resistance, rigidity and ductility. Mechanical properties were tested by tensile destructive tests and analysis by photoelasticity. About 500 injections were carried out on this core, remaining under conditions of withstanding many more.
In general terms, important differences were not noticed between the behavior of the specimens obtained in the core and the ones from the machined cavity, for the set of the analysed materials. However in the analysis by photoelasticiy (Fig. 7) it was noticed a different tensional state between both types of specimens, basically due to differences in the heat transference and rigidity of the respective mold cavities. This difference explains the ductility variations more outstanding in the partially crystalline materials such as HDPE and PA 6.
For the case of HDPE in all the analysed tested tubes it was noticed a lower ductility in the specimens obtained in the nickel core, quantified about 30%. In the case of PA 6 this value was around 50%.
8. Conclusions
After consecutive tests and in different conditions it has been checked that the nickel sulfamate bath, with the utilized additives has allowed to obtain nickel shells with some mechanical properties acceptable for the required application, injection molds, that is to say, good reproducibility, high level of hardness and good mechanical resistance in terms of the resultant laminar structure. The mechanical deficiencies of the nickel shell will be partially replaced by the epoxy resin that finishes shaping the core for the injection mold, allowing to inject medium series of plastic parts with acceptable quality levels.
References
[1] A.E.W. Rennie, C.E. Bocking and G.R. Bennet, Electroforming of rapid prototyping mandrels for electro discharge machining electrodes, J. Mater. Process. Technol. 110 (2001), pp. 186–196. [2] P.K.D.V. Yarlagadda, I.P. Ilyas and P. Chrstodoulou, Development of rapid tooling for sheet metal drawing using nickel electroforming and stereo lithography processes, J. Mater. Process. Technol. 111 (2001), pp. 286–294.
[3] J. Hart, A. Watson, Electroforming: A largely unrecognised but expanding vital industry, Interfinish 96, 14 World Congress, Birmingham, UK, 1996.
[4] M. Monzón et al., Aplicación del electroconformado en la fabricación rápida de moldes de inyección, Revista de Plásticos Modernos. 84 (2002), p. 557.
[5] L.F. Hamilton et al., Cálculos de Química Analítica, McGraw Hill (1989).
[6] E. Julve, Electrodeposición de metales, 2000 (E.J.S.).
[7] A. Watson, Nickel Sulphamate Solutions, Nickel Development Institute (1989).
[8] A. Watson, Additions to Sulphamate Nickel Solutions, Nickel Development Institute (1989).
[9] J. Dini, Electrodeposition Materials Science of Coating and Substrates, Noyes Publications (1993).
[10] J.W. Judy, Magnetic microactuators with polysilicon flexures, Masters Report, Department of EECS, University of California, Berkeley, 1994. (cap′. 3).
外文資料譯文
注塑成型優(yōu)化方法
tuncayerzurumlua和巴布爾ozcelik
廠房及制造工程,伊利諾斯工學(xué)院41400、科賈埃利,土耳其
摘 要
快速成型技術(shù)及快速模具發(fā)達(dá)國(guó)家已廣泛在過(guò)去幾年. 在這篇文章中,作為一種程序,使電芯塑料注射模具分析. 貝殼制成模型,通過(guò)快速成型得到利用差分系統(tǒng). 主要目的是分析力學(xué)特征鎳炮彈、 學(xué)習(xí)方面的不同金相組織,硬度,內(nèi)部講,可能失敗 由這些特色的有關(guān)參數(shù)以生產(chǎn)貝殼電設(shè)備. 終于引爆了一個(gè)核心注塑模具.
文章概要
1. 引言
2. 注塑模具制造過(guò)程中的
3. 殼牌獲取電:設(shè)備
4. 獲得硬度
5. 金相組織
6. 測(cè)試的注塑模具
7. 結(jié)論
參考資料
1、引言
其中最重要的是現(xiàn)代工業(yè)遇到的挑戰(zhàn)是提供更好的產(chǎn)品與消費(fèi)者,優(yōu)秀品種和時(shí)間變異(新設(shè)計(jì)). 因此,現(xiàn)代工業(yè)必須有更多的競(jìng)爭(zhēng)性和生產(chǎn)成本與接受. 毫無(wú)疑問(wèn),結(jié)合時(shí)間變量,質(zhì)量并不容易,因?yàn)樗麄兘?jīng)常變狀態(tài) 互相; 科技進(jìn)步生產(chǎn)許可證制度,將可更有效和可行的組合在 方式,例如,如果是演化的觀測(cè)系統(tǒng)和注塑技術(shù)、 我們得出的結(jié)論是,事實(shí)上 需少時(shí)間把新產(chǎn)品的市場(chǎng)和較高素質(zhì). 快速模具制造技術(shù),在這一領(lǐng)域, 其中的技術(shù)進(jìn)步,使得有可能改善設(shè)計(jì)和制造過(guò)程注入部分. 快速模具制造技術(shù)基本上是由程序集將允許我們獲取 塑料模具零件,小型系列 在短短的時(shí)間里,以可接受的精度水平. 其應(yīng)用領(lǐng)域不僅包括制作塑膠件注[1],[2],[3]但是, 的確,這是他們研制并在那里找到更多的最高產(chǎn)量
本文包括在科研第一線(xiàn),廣泛試圖研究確定,分析測(cè)試和建議 在產(chǎn)業(yè)層次,形成核心的可能性注塑模具從獲取鎳炮彈、 同時(shí),作為一個(gè)初步的原型取得了差分模型快速成型設(shè)備
它也將不得不說(shuō),事前并沒(méi)有任何新電鑄技術(shù)的應(yīng)用,因?yàn)樗?業(yè)內(nèi)人士無(wú)數(shù)、 但這種試圖調(diào)查研究工作,并在多大程度上使用這一技術(shù)參數(shù),其中 在生產(chǎn)技術(shù)上的快速模具. 所有在準(zhǔn)確、制度化的方式方法的運(yùn)用,并提出了工作.
2、注塑模具制造過(guò)程中的核心是由鎳殼薄,透過(guò)電進(jìn)程 這是一個(gè)充滿(mǎn)金屬環(huán)氧樹(shù)脂主管期間一體化這一核心板塊[4] 模具(圖1)制造許可證直接注射A型多用標(biāo)本、 他們確定的甲狀旁腺恩的SO3167標(biāo)準(zhǔn). 目的是要確定這個(gè)試樣力學(xué)性能的材料收集代表工業(yè) 在注入這些工具及其性能相比常規(guī)手段獲得
該階段取得核心根據(jù)這一方法研制工作,有以下幾方面:
(一) 在設(shè)計(jì)CAD系統(tǒng)預(yù)期目標(biāo)
(二) 在快速原型制造設(shè)備模型(差分系統(tǒng)). 該材料將ABS塑料
(三) 生產(chǎn)鎳電殼牌從以往的模式已經(jīng)涂了導(dǎo)電涂料 事前(必須有導(dǎo)電).
(四) 清理殼牌從模型
(五) 生產(chǎn)核心填寫(xiě)背面與殼牌環(huán)氧樹(shù)脂抗高溫 隨著銅管與冷凍槽
有兩個(gè)空洞的注塑模具、 他們一個(gè)是電加工的核心,一是直接在移動(dòng)壓板. 因此,它獲得了與同一工具及同一工藝條件、 同時(shí)注入兩種不同制成標(biāo)本蛀牙技術(shù).
3、殼牌獲取電設(shè)備電鍍[5]和[6]是一個(gè)電化學(xué)過(guò)程中的化學(xué)變化,當(dāng)它起源于一電解質(zhì) 悠悠電流通過(guò). 該電鍍[5]和[6]是一個(gè)電化學(xué)過(guò)程中的化學(xué)變化,當(dāng)它起源于一電解質(zhì) 悠悠電流通過(guò). 該電解槽是由金屬鹽兩個(gè)電極淹沒(méi),一個(gè)陽(yáng)極(鎳)、陰極(示范) 它是通過(guò)把烈度來(lái)自直流. 當(dāng)電流流經(jīng)電路 目前在金屬離子的溶液轉(zhuǎn)化為原子,是定居于創(chuàng)造一個(gè)更加陰極 存款少或制服層
鍍液采用這項(xiàng)工作是由鎳、磺酸[7][8]集中在400 毫升/公升,氯化鎳(10微克/公升)、硼酸(50微克/公升),allbrite習(xí)得(30完工/公升),703allbrite(2完工/公升). 選擇這種組合主要原因是我們打算申請(qǐng)類(lèi)別,即 注塑模具,即使注射了玻璃纖維. 磺酸鎳讓我們獲得可以接受的程度,在內(nèi)部講殼牌(作了測(cè)試結(jié)果 不同工藝條件,不高于50兆帕的最佳條件和2兆帕左右). 不過(guò),這種程度的內(nèi)部壓力也是作為添加劑使用后果allbrite習(xí)得、 這是由衍生-T強(qiáng)調(diào)消脂、甲醛水溶液. 這種添加劑也贊成增加阻力較小殼當(dāng)允許糧食. 703allbrite是降解水溶液表面代理商代理已經(jīng)利用以減少蝕. 氯化鎳,盡管危害性的內(nèi)部講 加上增強(qiáng)導(dǎo)電溶液并贊成在金屬均勻分布在 陰極. 硼酸pH值的作為緩沖
該設(shè)備用于制造鎳炮彈已測(cè)試如下:
● 聚丙烯坦克:600毫米×400毫米×500毫米的尺寸
● 三聚四氟乙烯電阻器,每一個(gè)有800
● 特約陰極機(jī)械攪拌系統(tǒng)
● 再循環(huán)和過(guò)濾系統(tǒng)組成的水泵、浴聚丙烯過(guò)濾
● 充電整流器. 最高強(qiáng)度和持續(xù)不斷的電流電壓0至16伏
● 鎳鈦籃 陽(yáng)極(鎳礦公司的S輪電解鎳)具有純度99%
● 氣體吸入系統(tǒng)
一旦已確定浴、 手術(shù)已更改參數(shù)測(cè)試不同條件的過(guò)程一直電流密度(之間 1、22℃),溫度(35至55℃)和pH值,改變鍍液組成部分
4、獲得硬度
一個(gè)非常有趣的測(cè)試期間已獲得結(jié)論,對(duì)不同程度的硬度 電炮彈一直保持在相當(dāng)高的穩(wěn)定價(jià)值觀. 在無(wú)花果. 2,可以觀察到哪種方式電流密度值為2.5和22℃之間, 硬度值從高壓540、580、 在pH0.2和4+攝氏45℃ 如果是浴的pH值為3.5,氣溫下降55℃以上這些價(jià)值觀 高壓520以下560高壓. 這一特點(diǎn)使得測(cè)試洗澡不同于其他傳統(tǒng)業(yè)務(wù)組成磺酸鎳、 允許經(jīng)營(yíng)范圍更廣的價(jià)值觀念; 然而,這種有限性的將取決于其他因素, 例如內(nèi)應(yīng)力,因?yàn)槠涔ぷ鳡顩r可能在某些變性的pH值、 電流密度和溫度. 在另一方面,傳統(tǒng)的硬度介于200-250高壓磺酸浴、 遠(yuǎn)比取得的一個(gè)考驗(yàn). 既要考慮到,對(duì)注塑模具、硬度接受高壓300起. 其中最常見(jiàn)的材料就可以找到注塑模具鋼改善(高壓290) 積分硬化鋼(高壓520-595),casehardened鋼(高壓760-800)等 這樣可以觀察到的硬度水平都將炮彈鎳 中高幅度的注塑模具材料. 反對(duì)低延性是有償殼牌這樣的環(huán)氧樹(shù)脂填充 它表示,將依負(fù)責(zé),因?yàn)檫@是一個(gè)內(nèi)心壓力控股收費(fèi)進(jìn)程 注塑; 這也是為什么必須要由有殼厚度為盡可能均勻(以上 最低值),。
5、金相組織
為了分析金相結(jié)構(gòu)、電流密度、溫度值,主要是改良. 樣品分析、橫向組額葉組(垂直于沉積). 實(shí)現(xiàn)便捷的準(zhǔn)備,他們?cè)诜奖愕姆庋b樹(shù)脂 巧言鐫刻在不同階段有硝酸、醋酸混合物. 瓶子的進(jìn)行每隔15,25,40,50收盤(pán)后擦拭, 為了觀察事后在奧林匹斯金相顯微鏡碲
收藏