2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版

上傳人:xt****7 文檔編號:105941446 上傳時間:2022-06-13 格式:DOC 頁數(shù):11 大?。?06KB
收藏 版權(quán)申訴 舉報 下載
2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版_第1頁
第1頁 / 共11頁
2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版_第2頁
第2頁 / 共11頁
2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版》由會員分享,可在線閱讀,更多相關(guān)《2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022屆九年級數(shù)學下冊 第二章 2.3 垂徑定理練習 (新版)湘教版 基礎(chǔ)題                知識點1 垂徑定理 1.(長沙中考改編)如圖,在⊙O中,弦AB=6,圓心O到AB的距離OC=2,則⊙O的半徑長為(B) A. B. C.2 D.4   2.如圖,AB是⊙O的弦,OD⊥AB于D,交⊙O于E,則下列說法錯誤的是(D) A.AD=BD B.∠AOE=∠BOE C.= D.OD=DE 3.如圖,在⊙O中,直徑CD垂直于弦AB.若∠C=25°,則∠BOD的度數(shù)是(D) A.25° B.30° C.40° D.50°

2、 4.如圖,AB是⊙O的弦,半徑OC⊥AB于點D.若⊙O的半徑為5,AB=8,則CD的長是(A) A.2 B.3 C.4 D.5 5.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,OC=5 cm,CD=6 cm,則OE=4cm. 6.(教材P59例1變式)如圖,在⊙O中,直徑AB垂直弦CD于點M,AM=18,BM=8,則CD的長為24. 7.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點M在⊙O上,MD恰好經(jīng)過圓心O,連接MB.若CD=16,BE=4,求⊙O的直徑. 解:∵AB⊥CD,CD=16, ∴CE=DE=8. 設(shè)OB=x,∵BE=4,

3、 ∴x2=(x-4)2+82. 解得x=10. ∴⊙O的直徑是20. 知識點2 垂徑定理的實際應(yīng)用 8.(教材P60習題T1變式)一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,截面圓圓心O到水面的距離OC是6,則水面寬AB是(A) A.16 B.10 C.8 D.6 9.如圖所示,某窗戶是由矩形和弓形組成,已知弓形的跨度AB=3 m,弓形的高EF=1 m,現(xiàn)計劃安裝玻璃,請幫工程師求出所在圓O的半徑r. 解:由題意,知OA=OE=r. ∵EF=1,∴OF=r-1. ∵OE⊥AB, ∴AF=AB=×3=1.5. 在Rt△OAF中,OF2+AF

4、2=OA2, 即(r-1)2+1.52=r2.解得r=. ∴圓O的半徑為 m. 易錯點 忽略垂徑定理的推論中的條件“不是直徑” 10.下列說法正確的是(D) A.過弦的中點的直徑平分弦所對的兩條弧 B.弦的垂直平分線平分它所對的兩條弧,但不一定過圓心 C.過弦的中點的直徑垂直于弦 D.平分弦所對的兩條弧的直徑平分弦 中檔題 11.如圖,將半徑為2 cm的圓形紙片折疊后,圓弧恰好經(jīng)過圓心O,則折痕AB的長為(C) A.2 cm B. cm C.2 cm D.2 cm 12.(xx·棗莊)如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,

5、BP=6,∠APC=30°.則CD的長為(C) A. B.2 C.2 D.8 提示:過點O作OH⊥PD于H,連接OD.AP=2,BP=6,則AO=BO=4,則PO=2,又∠OPH=∠APC=30°,∴OH=1,OD=OB=4,在Rt△HOD中,HD==,∴CD=2HD=2. 13.如圖,以點P為圓心的圓弧與x軸交于A,B兩點,點P的坐標為(4,2),點A的坐標為(2,0),則點B的坐標為(6,0). 14.(xx·黃岡)如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,∠CAB=60°,弦AD平分∠CAB.若AD=6,則AC=2. 15.(xx·孝感)已知

6、⊙O的半徑為10 cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=16 cm,CD=12 cm,則弦AB和CD之間的距離是2或14cm. 16.(xx·安徽)如圖,⊙O為銳角△ABC的外接圓,半徑為5. (1)用尺規(guī)作圖作出∠BAC的平分線,并標出它與劣弧BC的交點E;(保留作圖痕跡,不寫作法) (2)若(1)中的點E到弦BC的距離為3,求弦CE的長. 解:(1)畫圖如圖所示. (2)∵AE平分∠BAC, ∴=. 連接OE,OC,EC,則OE⊥BC于點F,EF=3. 在Rt△OFC中,由勾股定理可得, FC===. 在Rt△EFC中,由勾股定理可得, CE===

7、. 17.如圖,CD為⊙O的直徑,弦AB交CD于點E,連接BD,OB. (1)求證:△AEC∽△DEB; (2)若CD⊥AB,AB=8,DE=2,求⊙O的半徑. 解:(1)證明:根據(jù)“同弧所對的圓周角相等”, 得∠A=∠D,∠C=∠ABD, ∴△AEC∽△DEB. (2)∵CD⊥AB,O為圓心, ∴BE=AB=4. 設(shè)⊙O的半徑為r,∵DE=2,則OE=r-2. ∴在Rt△OEB中,由勾股定理,得OE2+EB2=OB2, 即(r-2)2+42=r2,解得r=5. ∴⊙O的半徑為5. 綜合題 18.如圖,已知∠MAN=30°,O為邊AN上一點,以O(shè)為圓心,

8、2為半徑作⊙O,交AN于D,E兩點,設(shè)AD=x.當x為何值時,⊙O與AM相交于B,C兩點,且∠BOC=90°? 解:過點O作OF⊥BC于點F. ∵∠BOC=90°,OB=OC=2, ∴∠OBC=45°, BC==2. ∵OF⊥BC,∴BF=BC=,∠BOF=45°. ∴∠OBF=∠BOF. ∴OF=BF=. ∵∠MAN=30°,∴OA=2OF=2. ∴AD=2-2, 即當x=2-2時,∠BOC=90°. 小專題(五) 與圓的基本性質(zhì)有關(guān)的計算與證明 1.已知:如圖,A,B,C,D是⊙O上的點,∠1=∠2,AC=3 cm. (1)求證:=; (2)求BD的長.

9、 解:(1)證明:∵∠1=∠2, ∴=, ∴+=+. ∴=. (2)∵=, ∴AC=BD. ∵AC=3 cm, ∴BD=3 cm. 2.A,B是⊙O上的兩個定點,P是⊙O上的動點(P不與A,B重合),我們稱∠APB是⊙O上關(guān)于點A,B的滑動角.已知∠APB是⊙O上關(guān)于點A,B的滑動角. (1)若AB是⊙O的直徑,則∠APB=90°; (2)如圖,若⊙O的半徑是1,AB=,求∠APB的度數(shù). 解:連接OA,OB,AB. ∵⊙O的半徑是1,即OA=OB=1, 又∵AB=, ∴OA2+OB2=AB2. 由勾股定理的逆定理可得,∠AOB=90°. ∴∠APB=

10、∠AOB=45°. 3.如圖,AB是⊙O的直徑,C,D兩點在⊙O上.若∠C=45°. (1)求∠ABD的度數(shù); (2)若∠CDB=30°,BC=3,求⊙O的半徑. 解:(1)連接AD. ∵∠BCD=45°, ∴∠DAB=∠BCD=45°. ∵AB是⊙O的直徑, ∴∠ADB=90°. ∴∠ABD=45°. (2)連接AC. ∵AB是⊙O的直徑, ∴∠ACB=90°. ∵∠CAB=∠CDB=30°,BC=3, ∴AB=6. ∴⊙O的半徑為3. 4.如圖,A,P,B,C是圓上的四個點,∠APC=∠CPB=60°,AP,CB的延長線相交于點D. (1)求證

11、:△ABC是等邊三角形; (2)若∠PAC=90°,AB=2,求PD的長. 解:(1)證明:∵A,P,B,C是圓上的四個點, ∴∠ABC=∠APC,∠CPB=∠BAC. ∵∠APC=∠CPB=60°, ∴∠ABC=∠BAC=60°. ∴∠ACB=60°. ∴△ABC是等邊三角形. (2)∵△ABC是等邊三角形, ∴∠ACB=60°,AC=AB=BC=2. ∵∠PAC=90°,∴∠DAB=∠D=30°. ∴BD=AB=2. ∵四邊形APBC是圓內(nèi)接四邊形,∠PAC=90°, ∴∠PBC=∠PBD=90°. 在Rt△PBD中,PD===4. 5.如圖,一圓

12、弧形橋拱的圓心為E,拱橋的水面跨度AB=80米,橋拱到水面的最大高度為20米.求: (1)橋拱的半徑; (2)現(xiàn)水面上漲后水面跨度為60米,求水面上漲的高度為多少米? 解:(1)過點E作EF⊥AB于點F,延長EF交圓于點D,則由題意得DF=20. 由垂徑定理知, 點F是AB的中點,AF=FB=AB=40米, EF=ED-FD=AE-DF, 由勾股定理知,AE2=AF2+EF2=AF2+(AE-DF)2. 設(shè)圓的半徑是r, 則r2=402+(r-20)2, 解得r=50. 即橋拱的半徑為50米. (2)設(shè)水面上漲后水面跨度MN為60米, MN交ED于H,連接EM,

13、 則MH=NH=MN=30米, ∴EH==40(米). ∵EF=50-20=30(米), ∴HF=EH-EF=10米. 6.已知△ABC,以AB為直徑的⊙O分別交AC,BC于點D,E,連接ED.若ED=EC. (1)求證:AB=AC; (2)若AB=4,BC=2,求CD的長. 解:(1)證明:∵ED=EC, ∴∠EDC=∠C. ∵∠EDC+∠ADE=180°,∠ADE+∠B=180°, ∴∠EDC=∠B. ∴∠B=∠C.∴AB=AC. (2)連接AE,∵AB為直徑, ∴AE⊥BC. 由(1)知,AB=AC, ∴BE=CE=BC=. 在△ABC與△EDC中

14、, ∵∠C=∠C,∠CDE=∠B, ∴△ABC∽△EDC. ∴=. ∴CE·CB=CD·CA. ∵AC=AB=4, ∴×2=4CD. ∴CD=. 7.如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC,AC于點D,E,且點D為BC的中點. (1)求證:△ABC為等邊三角形; (2)求DE的長; (3)在線段AB的延長線上是否存在一點P,使△PBD≌△AED,若存在,請求出PB的長;若不存在,請說明理由. 解:(1)證明:連接AD. ∵AB是⊙O的直徑, ∴∠ADB=90°. ∵點D是BC的中點, ∴AD是線段BC的垂直平分線. ∴AB=AC. ∵AB=BC,∴AB=BC=AC. ∴△ABC為等邊三角形. (2)連接BE. ∵AB是直徑,∴∠AEB=90°. ∴BE⊥AC. ∵△ABC是等邊三角形, ∴AE=EC,即E為AC的中點. ∵D是BC的中點,故DE為△ABC的中位線, ∴DE=AB=×2=1. (3)存在點P使△PBD≌△AED, 由(1)(2)知,BD=ED, ∵∠BAC=60°,DE∥AB,∴∠AED=120°. ∵∠ABC=60°,∴∠PBD=120°. ∴∠PBD=∠AED. 要使△PBD≌△AED,只需PB=AE=1.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!