2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練

上傳人:xt****7 文檔編號:105671016 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):10 大?。?68KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練_第1頁
第1頁 / 共10頁
2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練_第2頁
第2頁 / 共10頁
2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)三輪沖刺 專題12 空間幾何體的三視圖、表面積及體積專項(xiàng)講解與訓(xùn)練   一個(gè)物體的三視圖的排列規(guī)則 俯視圖放在正(主)視圖的下面,長度與正(主)視圖的長度一樣,側(cè)(左)視圖放在正(主)視圖的右面,高度與正(主)視圖的高度一樣,寬度與俯視圖的寬度一樣.即“長對正、高平齊、寬相等”. (1)某四棱錐的三視圖如圖所示,則該四棱錐的最長棱的長度為(  ) A.3    B.2     C.2   D.2 (2) 某多面體的三視圖如圖所示,其中正視圖和左視圖都由正方形和等腰直角三角形組成,正方形的邊長為2,俯視圖為等腰直角三角形.該多面體的各個(gè)面中有若干個(gè)是梯

2、形,這些梯形的面積之和為(  ) A.10 B.12 C.14 D.16 【答案】 (1)B (2)B 【解析】 (1)根據(jù)三視圖可得該四棱錐的直觀圖(四棱錐P-ABCD)如圖所示,將該四棱錐放入棱長為2的正方體中.由圖可知該四棱錐的最長棱為PD,PD==2.故選B. (2)由多面體的三視圖還原直觀圖如圖所示. 該幾何體由上方的三棱錐A-BCE和下方的三棱柱BCE-B1C1A1構(gòu)成,其中平面CC1A1A和平面BB1A1A是梯形,則梯形的面積之和為2×=12.故選B. 由三視圖還原到直觀圖的三個(gè)步驟 (1)根據(jù)俯視圖確定幾何體的底面. (2)根據(jù)正(主)視圖

3、或側(cè)(左)視圖確定幾何體的側(cè)棱與側(cè)面的特征,調(diào)整實(shí)線和虛線所對應(yīng)的棱、面的位置. 格紙上小正方形的邊長為1,粗線畫出的是某幾何體的正視圖(等腰直角三角形)和側(cè)視圖,且該幾何體的體積為,則該幾何體的俯視圖可以是(  ) 【答案】D. 【解析】由題意可得該幾何體可能為四棱錐,如圖所示,其高為2,其底面為正方形,面積為2×2=4,因?yàn)樵搸缀误w的體積為×4×2=,滿足條件,所以俯視圖可以為一個(gè)直角三角形.選D. 空間幾何體的表面積和體積 考向1 由空間幾何體的結(jié)構(gòu)特征計(jì)算表面積與體積 1.柱體、錐體、臺(tái)體的側(cè)面積公式 (1)S柱側(cè)=ch(c為底面周長,h為高); (2)S

4、錐側(cè)=ch′(c為底面周長,h′為斜高); (3)S臺(tái)側(cè)=(c+c′)h′(c′,c分別為上下底面的周長,h′為斜高). 2.柱體、錐體、臺(tái)體的體積公式 (1)V柱體=Sh(S為底面面積,h為高); (2)V錐體=Sh(S為底面面積,h為高); (3)V臺(tái)=(S++S′)h(S,S′分別為上下底面面積,h為高)(不要求記憶). (2017·高考全國卷Ⅰ)如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)證明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積. 【解析

5、】 (1)證明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD,從而AB⊥平面PAD. 又AB?平面PAB,所以平面PAB⊥平面PAD. 考向2 由三視圖計(jì)算空間幾何體的體積和表面積  根據(jù)幾何體的三視圖求其表面積與體積的三個(gè)步驟 第一步:根據(jù)給出的三視圖判斷該幾何體的形狀. 第二步:由三視圖中的數(shù)量標(biāo)示確定該幾何體的各個(gè)度量. 第三步:套用相應(yīng)的面積公式與體積公式計(jì)算求解. 格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為(  ) A.90π   B.63

6、π   C.42π   D.36π (2)如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為(  ) A.18+36 B.54+18 C.90 D.81 【答案】 (1)B (2)B 空間幾何體的表面積與體積的求法 (1)據(jù)三視圖求表面積、體積時(shí),解題的關(guān)鍵是對所給三視圖進(jìn)行分析,得到幾何體的直觀圖; (2)多面體的表面積是各個(gè)面的面積之和,求組合體的表面積時(shí)要注意重合部分的面積; (3)求規(guī)則幾何體的體積時(shí),只需確定底面與相應(yīng)的高,而求一些不規(guī)則幾何體的體積時(shí),往往需采用分割或補(bǔ)形思想,轉(zhuǎn)化求解.  【對點(diǎn)訓(xùn)練】 1.

7、(2019·廣州五校協(xié)作體第一次診斷)某幾何體的三視圖如圖所示,則該幾何體的表面積為(  ) A.+1 B. C.+1 D.+1 【答案】C. 【解析】由三視圖可知該幾何體是一個(gè)圓柱和半個(gè)圓錐的組合體,故其表面積為π+1+2π×2+π=+1,選C. 2.(2017·高考山東卷)由一個(gè)長方體和兩個(gè)圓柱體構(gòu)成的幾何體的三視圖如圖,則該幾何體的體積為________. 【答案】:2+ 【解析】:由題意知該幾何體是由一個(gè)長方體和兩個(gè)圓柱體構(gòu)成,其中長方體的體積V1=2×1×1=2,兩個(gè)圓柱體的體積之和V2=×π×12×1×2=,所以該幾何體的體積V=V1+V2=2+.

8、與球有關(guān)的切、接問題 考向1 外接球 (1)已知圓柱的高為1,它的兩個(gè)底面的圓周在直徑為2的同一個(gè)球的球面上,則該圓柱的體積為(  ) A.π         B. C. D. (2)已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SC是球O的直徑.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱錐S-ABC的體積為9,則球O的表面積為________. 【答案】 (1)B (2)36π 【解析】 (1)球心到圓柱的底面的距離為圓柱高的,球的半徑為1,則圓柱底面圓的半徑r= =,故該圓柱的體積V=π×()2×1=,故選B. (2)設(shè)球O的半徑為R,因?yàn)镾C為球O的直徑

9、,所以點(diǎn)O為SC的中點(diǎn),連接AO,OB,因?yàn)镾A=AC,SB=BC,所以AO⊥SC,BO⊥SC,因?yàn)槠矫鍿CA⊥平面SCB,平面SCA∩平面SCB=SC,所以AO⊥平面SCB,所以VS-ABC=VA-SBC=×S△SBC×AO=×(×SC×OB)×AO,即9=×(×2R×R)×R,解得R=3,所以球O的表面積為S=4πR2=4π×32=36π. 考向2 內(nèi)切球 (1)在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個(gè)體積為V的球.若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是(  ) A.4π         B. C.6π D. (2)如圖,在圓柱O1O2 內(nèi)有一個(gè)

10、球O,該球與圓柱的上、下底面及母線均相切.記圓柱O1O2 的體積為V1 ,球O的體積為V2 ,則的值是________. 格紙上小正方形的邊長為1,粗實(shí)線畫出的是某四棱錐的三視圖,則該四棱錐的外接球的表面積為(  ) A.136π B.34π C.25π D.18π 【答案】B. 【解析】由三視圖知,該四棱錐的底面是邊長為3的正方形、高為4,且有一條側(cè)棱垂直于底面,所以可將該四棱錐補(bǔ)形為長、寬、高分別為3、3、4的長方體,該長方體外接球的半徑R即為該四棱錐外接球的半徑,所以2R=,解得R=,所以該四棱錐外接球的表面積為4πR2=34π,選B. 7.(2018·合肥質(zhì)量檢測(二

11、))一個(gè)幾何體的三視圖及其尺寸如圖所示,則該幾何體的體積為(  ) A. B. C.28 D.22+6 【答案】A. 【解析】由三視圖知,該幾何體為三棱臺(tái),其上、下底面分別是直角邊為2,4的等腰直角三角形,高為2,所以該幾何體的體積V=×[×2×2+×4×4+]×2=,故選A. 8.一個(gè)幾何體的三視圖如圖所示(其中正視圖的弧線為四分之一圓周),則該幾何體的表面積為(  ) A.72+6π B.72+4π C.48+6π D.48+4π 【答案】A. 【解析】由三視圖知,該幾何體由一個(gè)正方體的部分與一個(gè)圓柱的部分組合而成(如圖所示),其表面積為16×2+(1

12、6-4+π)×2+4×(2+2+π)=72+6π,故選A. 9.(2019·廣西三市聯(lián)考)如圖是某幾何體的三視圖,則該幾何體的體積為(  ) A.6 B.9 C.12 D.18 【答案】B. 【解析】該幾何體是一個(gè)直三棱柱截去所得,如圖所示,其體積為××3×4×2=9. 10.(2019·貴陽檢測)三棱錐P-ABC的四個(gè)頂點(diǎn)都在體積為的球的表面上,底面ABC所在的小圓面積為16π,則該三棱錐的高的最大值為(  ) A.4 B.6 C.8 D.10 【答案】C. 【解析】依題意,設(shè)題中球的球心為O、半徑為R,△ABC的外接圓半徑為r,則=,解得R=5,由πr2

13、=16π,解得r=4,又球心O到平面ABC的距離為=3,因此三棱錐P-ABC的高的最大值為5+3=8,選C. (2)在平面PCBM內(nèi),過點(diǎn)M作MN⊥BC交BC于點(diǎn)N,連接AN,則CN=PM=1, 又PM∥BC,所以四邊形PMNC為平行四邊形,所以PC∥MN且PC=MN, 由(1)得PC⊥平面ABC,所以MN⊥平面ABC, 在△ACN中,AN2=AC2+CN2-2AC·CNcos 120°=3,即AN=. 又AM=2,所以在Rt△AMN中,MN=1,所以PC=MN=1. 在平面ABC內(nèi),過點(diǎn)A作AH⊥BC交BC的延長線于點(diǎn)H,則AH⊥平面PMC, 因?yàn)锳C=CN=1,∠ACB=1

14、20°,所以∠ANC=30°. 所以在Rt△AHN中,AH=AN=, 而S△PMC=×1×1=, 所以VP-MAC=VA-PMC=××=. 6.(2019·成都第一次診斷性檢測)如圖(1),在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,點(diǎn)G,R分別在線段DH,HB上,且=.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點(diǎn)A,B,C重合于點(diǎn)P,如圖(2)所示. (1)求證:GR⊥平面PEF; (2)若正方形ABCD的邊長為4,求三棱錐P-DEF的內(nèi)切球的半徑. 【解析】:(1)證明:在正方形ABCD中,∠A,∠ABC,∠C為直角. 所以在三棱錐P-DEF中,PE,PF,PD兩兩垂直. 所以PD⊥平面PEF. 因?yàn)椋剑矗?,所以在△PDH中,RG∥PD. 所以GR⊥平面PEF. (2)正方形ABCD邊長為4. 由題意知,PE=PF=2,PD=4,EF=2,DF=2. 所以S△PEF=2,S△DPF=S△DPE=4. S△DEF=×2×=6. 設(shè)三棱錐P-DEF內(nèi)切球的半徑為r, 則三棱錐的體積VP-DEF=××2×2×4=(S△PEF+2S△DPF+S△DEF)·r,解得r=. 所以三棱錐P-DEF的內(nèi)切球的半徑為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!