中考數(shù)學(xué)總復(fù)習(xí) 圓的有關(guān)性質(zhì)教案

上傳人:xt****7 文檔編號(hào):105443747 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):2 大?。?10KB
收藏 版權(quán)申訴 舉報(bào) 下載
中考數(shù)學(xué)總復(fù)習(xí) 圓的有關(guān)性質(zhì)教案_第1頁(yè)
第1頁(yè) / 共2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí) 圓的有關(guān)性質(zhì)教案_第2頁(yè)
第2頁(yè) / 共2頁(yè)

最后一頁(yè)預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《中考數(shù)學(xué)總復(fù)習(xí) 圓的有關(guān)性質(zhì)教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)總復(fù)習(xí) 圓的有關(guān)性質(zhì)教案(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、中考數(shù)學(xué)總復(fù)習(xí) 圓的有關(guān)性質(zhì)教案 教學(xué)目標(biāo): 知識(shí)目標(biāo): (1)理解圓、等圓、等弧等概念及圓的對(duì)稱性,掌握點(diǎn)和圓的位置關(guān)系; (2)掌握垂徑定理及其逆定理和圓心角,弧,弦,弦心距及圓周角之間的主要關(guān)系;掌握?qǐng)A周角定理并會(huì)用它們進(jìn)行計(jì)算; (3)掌握?qǐng)A的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角的性質(zhì)。 (4)會(huì)用尺規(guī)作三角形的外接圓;了解三角形的外心的概念. 能力目標(biāo): 通過(guò)知識(shí)點(diǎn)和典型題的講練,使學(xué)生熟練掌握本節(jié)課的知識(shí)點(diǎn),再用題圖變形與題組訓(xùn)練來(lái)培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力以及思維的靈活性和廣闊性。 情感目標(biāo): 通過(guò)題圖變形與題組訓(xùn)練來(lái)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;同時(shí)將

2、課本的題目與中考題結(jié)合在教學(xué)當(dāng)中以進(jìn)一步向?qū)W生強(qiáng)調(diào)“依綱靠本”的復(fù)習(xí)指導(dǎo)思想,強(qiáng)化學(xué)生的中考意識(shí)。 知識(shí)結(jié)構(gòu) 圓 圓內(nèi)接四邊形及性質(zhì) 重點(diǎn)、熱點(diǎn) 垂徑定理及推論;圓心角、弧、弦、弦心距之間的關(guān)系定理. 運(yùn)用圓內(nèi)接四邊形的性質(zhì)解有關(guān)計(jì)算和證明題. 【典型例析】 例1.(1)[2002.廣西] 如圖7.1-1.OE、OF分別是⊙O的弦AB、CD的弦心距,若OE=OF,則 (只需寫(xiě)出一個(gè)正確的結(jié)論). (2)[2002. 廣西] 如圖7.1-2.已知,AB為⊙O的直徑,D為弦AC的中點(diǎn),BC=6cm,則OD= . [特色] 以上幾道中考題均為直接運(yùn)用圓的有關(guān)性質(zhì)

3、解題. [解答](1)AB=CD或 AB=CD或AD=BC, 直接運(yùn)用圓心角、弧、弦、弦心距之間的關(guān)系定理. (2)由三角形的中位線定理知OD=BC [拓展]復(fù)習(xí)中要加強(qiáng)對(duì)圓的有關(guān)性質(zhì)的理解、運(yùn)用. 例2.(1)[2002.大連市]下列命題中真命題是( ). A. 平分弦的直徑垂直于弦 B.圓的半徑垂直于圓的切線 C.到圓心的距離大于半徑的點(diǎn)在圓內(nèi) D.等弧所對(duì)的圓心角相等 (2)[2002.河北] 如圖7.1-3.AB是⊙O的直徑,CD是⊙O弦,若AB=10cm,CD=8cm,那么A、B兩點(diǎn)到直線CD的距離之和為( ). A.12cm B.10cm C.

4、8cm D.6cm (3)[2002.武漢市] 已知如圖7.1-4圓心角∠BOC=100,則圓周角∠BAC的度數(shù)是( ). A. 50 B.100 C.130 D.200 [特色]著眼于基本知識(shí)的考查和辨析思維的評(píng)價(jià). [解答] (1) D (考查對(duì)基本性質(zhì)的理解). (2) D (過(guò)O作OM⊥CD,連結(jié)OC,由垂徑定理得CM=CD=4,由勾股定理得OM=3,而AB兩點(diǎn)到CD的距離和等于OM的2倍) (3) A (由圓周角定理可得) [拓展] 第(2)題中,涉及圓的弦一般作弦心距. 例3.[2002.廣西南寧市]圓內(nèi)接四邊形ABCD,∠A、∠B、∠C的度

5、數(shù)的比是1∶2∶3,則這個(gè)四邊形的最大角是 . [特色]運(yùn)用圓內(nèi)接四邊形的性質(zhì)進(jìn)行簡(jiǎn)單計(jì)算. [解答]設(shè)A=x,則∠B=2x,∠C=3x . ∵∠A+∠C=180, ∴x+3x=180, ∴ x=45. ∴∠A=45, ∠ B=90, ∠C=135, ∠ D=90. ∴ 最大角為135. [拓展]此題著眼于基本性質(zhì)、基本方法的考查.設(shè)未知數(shù),列方程求解是解此類題的基本方法. 例4. [2002.陜西] 已知,如圖7.1-5 BC為半圓O的直徑,F(xiàn)是半圓上異于BC的點(diǎn),A是BF的中點(diǎn),AD⊥BC于點(diǎn)D,BF交AD于點(diǎn)E. (1) 求證:B

6、E?BF=BD?BC (2) 試比較線段BD與AE的大小,并說(shuō)明道理. [特色] 此題是教材中的習(xí)題變形而來(lái),它立意于考查分析、觀察、比較、歸納等能力. [解答] (1)連結(jié)FC,則BF⊥FC. 在△BDF和△BCF中, ∵∠BFC=∠EDB=90 , ∠ FBC=∠EBD, ∴△BDE∽△BFC, ∴ BE∶BC=BD∶BF. 即 BF?BE=BD?BC. (2) AE>BD , 連結(jié)AC、AB 則∠BAC=90. ∵, ∴∠1=∠2. 又∵∠2+∠ABC=90, ∠3+∠ABD=90, ∴∠2=∠3, ∠1=∠3, ∴

7、AE=BE. 在Rt△EBD中, BE>BD, ∴AE>BD. [拓展] 若AC交BE于G,請(qǐng)想一想,在什么情況下線段BE、BG、FG有相等關(guān)系? 例5.[2001.吉林省]如圖7.4-1,矩形ABCD,AD=8,DC=6,在對(duì)角線AC上取一點(diǎn)O,以O(shè)C為半徑的圓切AD于E,交BC于F,交CD于G. (1)求⊙O的半徑R; (2)設(shè)∠BFE=α,∠GED=β,請(qǐng)寫(xiě)出α、β、90三者之間的關(guān)系式(只需寫(xiě)出一個(gè)),并證明你的結(jié)論. [特色]此題第二問(wèn)設(shè)計(jì)為開(kāi)放性問(wèn)題,它立意考查學(xué)生分析、觀察、比較、歸納能力. [解答] (1)連結(jié)OE,則OE⊥AD. ∵四邊形是矩形,

8、 ∴∠D=90, OE∥CD, ∴AC===10. ∵△AOE∽△ACD, ∴ OE∶CD=AO∶AC, ∴ R∶6=(10-R) ∶10, 解之得: R=. (2)∵四邊形是圓的內(nèi)接四邊形,∴∠EFB=∠EGC, ∵∠EGC=90+β, ∴α =90+β 或 ∵ β<90, α =∠EGC>90, ∴ β < 90< α. [拓展]比較角的大小時(shí),要善于發(fā)現(xiàn)角與角之間的關(guān)系,判斷角是銳角還是直角、鈍角. [中考動(dòng)態(tài)前瞻] 本節(jié)考查的題型常以填空、選擇、解答題的形式出現(xiàn),重點(diǎn)考查對(duì)圓的基本慨念、基本性質(zhì)的理解及運(yùn)用.特別是垂徑定理及推論、圓周角定理及推論的運(yùn)用是考查的重點(diǎn)內(nèi)容. 對(duì)圓內(nèi)接四邊形的性質(zhì)進(jìn)行考查,主要以填空題、選擇題、計(jì)算題、證明題的形式出現(xiàn),利用圓內(nèi)接四邊形的性質(zhì)主要是得到角相等或互補(bǔ).一般不會(huì)考較復(fù)雜的計(jì)算、證明.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!