2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案

上傳人:xt****7 文檔編號(hào):105409565 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):4 大?。?7.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案_第1頁(yè)
第1頁(yè) / 共4頁(yè)
2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案_第2頁(yè)
第2頁(yè) / 共4頁(yè)
2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案_第3頁(yè)
第3頁(yè) / 共4頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)第二輪復(fù)習(xí) 導(dǎo)數(shù)教學(xué)案 考綱指要: 導(dǎo)數(shù)是高中數(shù)學(xué)中重要的內(nèi)容,是解決實(shí)際問(wèn)題的強(qiáng)有力的數(shù)學(xué)工具,運(yùn)用導(dǎo)數(shù)的有關(guān)知識(shí),研究函數(shù)的性質(zhì):?jiǎn)握{(diào)性、極值和最值是高考的熱點(diǎn)問(wèn)題。 考點(diǎn)掃描: 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 ① 結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間; ② 結(jié)合函數(shù)的圖像,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過(guò)三次的多項(xiàng)式函數(shù)最大值、最小值;體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性。 考題先知:

2、 例1.設(shè)函數(shù),其中實(shí)數(shù)A、B、C滿(mǎn)足: ①; ②。 (1)求證:; (2)設(shè),求證:。 證明:(1)由得:, 又,所以, (2)當(dāng)時(shí),等價(jià)于當(dāng)時(shí),,所以只須證明當(dāng)時(shí),,由②知:且,所以為開(kāi)口向上的拋物線,其對(duì)稱(chēng)軸方程,又由得: ,即,所以,當(dāng)時(shí),有 = =,所以為[0,2]上的增函數(shù)。因此,當(dāng)時(shí),有,即當(dāng)時(shí),。 評(píng)注:本題以一元三次函數(shù)為載體,以導(dǎo)數(shù)作為工具,進(jìn)一步研究函數(shù)性質(zhì)、代數(shù)式變形、解析幾何和不等式證明等數(shù)學(xué)問(wèn)題,對(duì)于這些題目,導(dǎo)數(shù)僅僅是背景,核心還是初等數(shù)學(xué)的變化技巧。 例2 已知函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間 上單調(diào)遞減,且。

3、 (Ⅰ) 求的表達(dá)式; (Ⅱ)設(shè),若對(duì)任意的, 不等式恒成立,求實(shí)數(shù)的最小值。 解析:(Ⅰ) 因?yàn)樵趨^(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以方程的兩根滿(mǎn)足。由,得,所以,而,故,則,從而。故 (Ⅱ)對(duì)任意的,不等式恒成立,等價(jià)于在區(qū)間上,。當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞減,從而在區(qū)間上,,則由,解得或,結(jié)合,可得實(shí)數(shù)的最小值為。 復(fù)習(xí)智略: 例3.(1)已知,試求函數(shù)的最小值; (2)若,求證:。 分析:求函數(shù)最值的常見(jiàn)方法是通過(guò)求導(dǎo),確定函數(shù)的單調(diào)區(qū)間,從而求出其最值。 解:(1)對(duì)于函數(shù),求導(dǎo)得 ,由得,當(dāng)時(shí),,函數(shù)是遞減函數(shù);當(dāng)時(shí),,函數(shù)是遞增函數(shù);所以當(dāng)時(shí)

4、,函數(shù)。 (2)由第(1)題得: 從而,,, 三式相加得: 變化:由(1)知:,從而,, ,三式相加,結(jié)合得: 。 聯(lián)想:在三角函數(shù)中,有公式,因此,若,且,則。 類(lèi)比:若,則 檢測(cè)評(píng)估: 1.如果f '(x)是二次函數(shù), 且 f '(x)的圖象開(kāi)口向上,頂點(diǎn)坐標(biāo)為(1,-), 那么曲線y=f(x)上任一點(diǎn)的切線的傾斜角α的取值范圍是( ) A. (0, ) B. [0, ]∪[, π] C. [0, ]∪[, π] D. [,] 2.已知函數(shù)在R上可導(dǎo),且·,則與的大小關(guān)系是 A.= B.< C.> D

5、.不能確定 ( ) 3.已知函數(shù)在R上可導(dǎo),當(dāng)時(shí),,且當(dāng),時(shí)有,若,則不等式解集為 ( ) A. B. C. D. 4.若函數(shù)是導(dǎo)函數(shù)的單調(diào)遞減區(qū)間是 ( ) A.[-1,0] B. C.[1,] D. 5 設(shè)函數(shù)fn(x)=n2x2(1-x)n(n為正整數(shù)),則fn(x)在[0,1]上的最大值為 ( ) A 0 B 1 C D 6.已知,方程在區(qū)間內(nèi)根的個(gè)數(shù)是    . 7. 已知曲線在點(diǎn)處的切線與軸、直線所圍成的三角形的面積為,則 .

6、 8.已知函數(shù)是R上的奇函數(shù),當(dāng)時(shí)取得極值, 則的單調(diào)區(qū)間是 ; 9.若方程在上有解,則實(shí)數(shù)的取值范圍是 。 10.已知函數(shù)在R上為減函數(shù),則的取值范圍是 11.已知,點(diǎn)A(s,f(s)), B(t,f(t)) (I) 若,求函數(shù)的單調(diào)遞增區(qū)間; (II)若函數(shù)的導(dǎo)函數(shù)滿(mǎn)足:當(dāng)|x|≤1時(shí),有||≤恒成立,求函數(shù)的解析表達(dá)式; (III)若0

7、項(xiàng)公式; (3)對(duì)于(2)中的數(shù)列,求證:①;②。 點(diǎn)撥與全解: 1.解:因,所以,故選B。 2.解:因,從而,得,所以原函數(shù)為,從而>,故選C。 3.解:因當(dāng)時(shí),,所以在上單調(diào)遞增;因當(dāng),時(shí)有,所以為偶函數(shù),原不等式可化為,即 ,得,故選C。 4.解:由得,即當(dāng)時(shí),函數(shù)單調(diào)遞增,又 是單調(diào)遞減的,所以當(dāng),即[1,]時(shí)單調(diào)遞減,故選C。 5.解?!遞′n(x)=2xn2(1-x)n-n3x2(1-x)n-1=n2x(1-x)n-1[2(1-x)-nx], 令f′n(x)=0,得x1=0,x2=1,x3=,易知fn(x)在x=時(shí)取得最大值, 最大值fn()=n2()

8、2(1-)n=4·()n+1故選D。 6.解:記,由得,所以當(dāng)時(shí),在區(qū)間上單調(diào)遞減,又,故原方程在區(qū)間內(nèi)有且只有一根。 7.解:過(guò)點(diǎn)處的切線是,與軸交點(diǎn)為,與直線的交點(diǎn)為,所以圍成的三角形的面積=,得。 8.解:∵為R上的奇函數(shù),∴, 即,∴d=0.∴,. ∵當(dāng)x=1時(shí),取得極值.∴ ∴ 解得:. ∴,,令,則或,令,則.∴的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為. 9.解:記,因得,所以在上,當(dāng)時(shí),函數(shù)有極小值,且在[0,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增, 又,所以當(dāng),即當(dāng)時(shí),方程在[1,2]上有一解,當(dāng),即當(dāng)[0,2]時(shí),方程在[0,1]上有一解,綜

9、上所述,當(dāng)時(shí),原方程在上有解。 10。解:由在R上恒成立得,從而。 11.解:(I) f (x)=x3-2x2+x, (x)=3x2-4x+1, 因?yàn)閒(x)單調(diào)遞增,所以(x)≥0, 即 3x2-4x+1≥0,解得,x≥1, 或x≤,故f(x)的增區(qū)間是(-∞,)和[1,+ ∞]. (II) (x)=3x2-2(a+b)x+ab. 當(dāng)x∈[-1,1]時(shí),恒有|(x)|≤. 故有≤(1)≤, ≤(-1)≤, ≤(0)≤, 即 ①+②,得≤ab≤,又由③,得ab=, 將上式代回①和②,得 a+b=0,故f(x)=x3x. (III) 假設(shè)⊥, 即= = st+f(s)f(t)=0, (s-a)(s-b)(t-a)(t-b)=-1, [st-(s+t)a+a2][st-(s+t)b+b2]=-1, 由s,t為(x)=0的兩根可得, s+t=(a+b), st=, (0

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!