2021高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何 第2節(jié) 空間圖形的基本關(guān)系與公理教學(xué)案 理 北師大版
《2021高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何 第2節(jié) 空間圖形的基本關(guān)系與公理教學(xué)案 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何 第2節(jié) 空間圖形的基本關(guān)系與公理教學(xué)案 理 北師大版(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二節(jié) 空間圖形的基本關(guān)系與公理 [最新考綱] 1.理解空間直線、平面位置關(guān)系的定義.2.了解可以作為推理依據(jù)的公理和定理.3.能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題. 1.四個(gè)公理 (1)公理1:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面(即可以確定一個(gè)平面). (2)公理2:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi), 那么這條直線在此平面內(nèi)(即直線在平面內(nèi)). 拓展:公理2的三個(gè)推論 推論1:經(jīng)過(guò)一條直線和這條直線外一點(diǎn)有且只有一個(gè)平面. 推論2:經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面. 推論3:經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面. (3)公理3:如果兩個(gè)不重
2、合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線. (4)公理4:平行于同一條直線的兩條直線平行. 2.直線與直線的位置關(guān)系 (1)位置關(guān)系的分類(lèi) (2)異面直線所成的角 ①定義:設(shè)a,b是兩條異面直線,經(jīng)過(guò)空間任一點(diǎn)O作直線a′∥a,b′∥b,把a(bǔ)′與b′所成的銳角(或直角)叫做異面直線a與b所成的角(或夾角). ②范圍:(0°,90°]. 拓展:異面直線判定的一個(gè)定理 過(guò)平面外一點(diǎn)和平面內(nèi)一點(diǎn)的直線,與平面內(nèi)不過(guò)該點(diǎn)的直線是異面直線,如圖所示. 3.空間中直線與平面、平面與平面之間的位置關(guān)系 (1)空間中直線與平面的位置關(guān)系 位置關(guān)系 圖形表示
3、符號(hào)表示 公共點(diǎn) 直線在平面內(nèi) aα 無(wú)數(shù)個(gè) 直線 不在 平面 內(nèi) 直線與平 面平行 a∥α 0個(gè) 直線與平面相交 直線與平 面斜交 a∩α=A 1個(gè) 直線與平 面垂直 a⊥α 1個(gè) (2)空間中平面與平面的位置關(guān)系 位置關(guān)系 圖形表示 符號(hào)表示 公共點(diǎn) 兩平面平行 α∥β 0個(gè) 兩平面相交 α∩β=l 無(wú)數(shù)_個(gè) 4.等角定理 空間中,如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ). 唯一性定理 (1)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行. (2)過(guò)直線外一點(diǎn)有且只有一個(gè)平面與已
4、知直線垂直. (3)過(guò)平面外一點(diǎn)有且只有一個(gè)平面與已知平面平行. (4)過(guò)平面外一點(diǎn)有且只有一條直線與已知平面垂直. 一、思考辨析(正確的打“√”,錯(cuò)誤的打“×”) (1)兩個(gè)平面α,β有一個(gè)公共點(diǎn)A,就說(shuō)α,β相交于過(guò)A點(diǎn)的任意一條直線.( ) (2)兩兩相交的三條直線最多可以確定三個(gè)平面.( ) (3)如果兩個(gè)平面有三個(gè)公共點(diǎn),則這兩個(gè)平面重合.( ) (4)若直線a不平行于平面α,且aα,則α內(nèi)的所有直線與a異面.( ) [答案] (1)× (2)√ (3)× (4)× 二、教材改編 1.已知a,b是異面直線,直線c平行于直線a,那么c與b( ) A.
5、一定是異面直線 B.一定是相交直線 C.不可能是平行直線 D.不可能是相交直線 C [由已知得直線c與b可能為異面直線也可能為相交直線,但不可能為平行直線,若b∥c,則a∥b,與已知a,b為異面直線相矛盾.] 2.如圖所示,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,AD的中點(diǎn),則異面直線B1C與EF所成角的大小為( ) A.30° B.45° C.60° D.90° C [連接B1D1,D1C(圖略), 則B1D1∥EF, 故∠D1B1C為所求的角, 又B1D1=B1C=D1C, ∴∠D1B1C=60°.] 3.下列命題正確的是( )
6、 A.兩個(gè)平面如果有公共點(diǎn),那么一定相交 B.兩個(gè)平面的公共點(diǎn)一定共線 C.兩個(gè)平面有3個(gè)公共點(diǎn)一定重合 D.過(guò)空間任意三點(diǎn),一定有一個(gè)平面 D [如果兩個(gè)平面重合,則排除A,B兩項(xiàng);兩個(gè)平面相交,則有一條交線,交線上任取三個(gè)點(diǎn)都是兩個(gè)平面的公共點(diǎn),故排除C項(xiàng);而D項(xiàng)中的三點(diǎn)不論共線還是不共線,則一定能找到一個(gè)平面過(guò)這三個(gè)點(diǎn).] 4.如圖,在三棱錐A-BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn),則 (1)當(dāng)AC,BD滿(mǎn)足條件________時(shí),四邊形EFGH為菱形; (2)當(dāng)AC,BD滿(mǎn)足條件________時(shí),四邊形EFGH為正方形. (1)AC=BD
7、 (2)AC=BD且AC⊥BD [(1)∵四邊形EFGH為菱形,∴EF=EH,∴AC=BD. (2)∵四邊形EFGH為正方形,∴EF=EH且EF⊥EH, ∵EF∥AC,EH∥BD,且EF=AC,EH=BD, ∴AC=BD且AC⊥BD.] 考點(diǎn)1 平面的基本性質(zhì)及應(yīng)用 共面、共線、共點(diǎn)問(wèn)題的證明 (1)證明共面的方法:①先確定一個(gè)平面,然后再證其余的線(或點(diǎn))在這個(gè)平面內(nèi);②證兩平面重合. (2)證明共線的方法:①先由兩點(diǎn)確定一條直線,再證其他各點(diǎn)都在這條直線上;②直接證明這些點(diǎn)都在同一條特定直線上. (3)證明線共點(diǎn)問(wèn)題的常用方法是:先證其中兩條直線交于一點(diǎn),再證其他直
8、線經(jīng)過(guò)該點(diǎn).
如圖所示,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB和AA1的中點(diǎn).求證:
(1)E,C,D1,F(xiàn)四點(diǎn)共面;
(2)CE,D1F,DA三線共點(diǎn).
[證明] (1)如圖,連接EF,CD1,A1B.
∵E,F(xiàn)分別是AB,AA1的中點(diǎn),
∴EF∥BA1.
又∵A1B∥D1C,∴EF∥CD1,
∴E,C,D1,F(xiàn)四點(diǎn)共面.
(2)∵EF∥CD1,EF 9、E,D1F,DA三線共點(diǎn).
本例第(1)問(wèn)的證明應(yīng)用了公理2的推論,采用線線共面,則線上的點(diǎn)必共面的思想;本例第(2)問(wèn)的證明應(yīng)用了公理3,采用先證明CE與D1F相交,再證明交點(diǎn)在直線DA上.
1.(2019·衡水中學(xué)模擬)有下列四個(gè)命題:
①空間四點(diǎn)共面,則其中必有三點(diǎn)共線;
②空間四點(diǎn)不共面,則其中任意三點(diǎn)不共線;
③空間四點(diǎn)中有三點(diǎn)共線,則此四點(diǎn)共面;
④空間四點(diǎn)中任意三點(diǎn)不共線,則此四點(diǎn)不共面.
其中真命題的所有序號(hào)有________.
②③ [①中,對(duì)于平面四邊形來(lái)說(shuō)不成立,故①是假命題;②中,若四點(diǎn)中有三點(diǎn)共線,則根據(jù)“直線與直線外一點(diǎn)可以確定一個(gè)平面”知四點(diǎn) 10、共面,與四點(diǎn)不共面矛盾,故②是真命題;由②的分析可知③是真命題;④中,平面四邊形的四個(gè)頂點(diǎn)中任意三點(diǎn)不共線,但四點(diǎn)共面,故④是假命題.]
2.如圖所示,空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別在BC,CD上,且BG∶GC=DH∶HC=1∶2.
(1)求證:E,F(xiàn),G,H四點(diǎn)共面;
(2)設(shè)EG與FH交于點(diǎn)P,求證:P,A,C三點(diǎn)共線.
[證明] (1)因?yàn)镋,F(xiàn)分別為AB,AD的中點(diǎn),
所以EF∥BD.
在△BCD中,==,
所以GH∥BD,
所以EF∥GH.
所以E,F(xiàn),G,H四點(diǎn)共面.
(2)因?yàn)镋G∩FH=P,P∈EG,EG平面ABC,
11、所以P∈平面ABC.同理P∈平面ADC.
所以P為平面ABC與平面ADC的公共點(diǎn).
又平面ABC∩平面ADC=AC,
所以P∈AC,
所以P,A,C三點(diǎn)共線.
考點(diǎn)2 判斷空間兩直線的位置關(guān)系
空間中兩直線位置關(guān)系的判定方法
1.若直線l1和l2是異面直線,l1在平面α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1,l2都不相交
B.l與l1,l2都相交
C.l至多與l1,l2中的一條相交
D.l至少與l1,l2中的一條相交
D [法一:(反證法) 由于l與直線l1,l2分別共面,故直線l與l1,l2要么都不相交,要么至 12、少與l1,l2中的一條相交.若l∥l1,l∥l2,則l1∥l2,這與l1,l2是異面直線矛盾.故l至少與l1,l2中的一條相交.
法二:(模型法)如圖(1),l1與l2是異面直線,l1與l平行,l2與l相交,故A,B不正確;如圖(2),l1與l2是異面直線,l1,l2都與l相交,故C不正確.
]
圖(1) 圖(2)
2.(2019·全國(guó)卷Ⅲ)如圖,點(diǎn)N為正方形ABCD的中心,△ECD為正三角形,平面ECD⊥平面ABCD,M是線段ED的中點(diǎn),則( )
A.BM=EN,且直線BM、EN是相交直線
B.BM≠EN,且直線BM,EN是相交直線
C.BM=EN,且直線BM、EN 13、是異面直線
D.BM≠EN,且直線BM,EN是異面直線
B [如圖所示, 作EO⊥CD于O,連接ON,過(guò)M作MF⊥OD于F.
連接BF,∵平面CDE⊥平面ABCD,EO⊥CD,EO平面CDE,∴EO⊥平面ABCD,MF⊥平面ABCD,
∴△MFB與△EON均為直角三角形.設(shè)正方形邊長(zhǎng)為2,易知EO=,ON=1,EN=2,
MF=,BF=,
∴BM=.
∴BM≠EN.連接BD,BE,∵點(diǎn)N是正方形ABCD的中點(diǎn),∴點(diǎn)N在BD上,且BN=DN.
又∵M(jìn)為ED的中點(diǎn),
∴BM,EN為△DBE的中線,
∴BM,EN必相交.故選B.]
3.在下列四個(gè)圖中,G,N,M,H分 14、別是正三棱柱的頂點(diǎn)或所在棱的中點(diǎn),則表示直線GH,MN是異面直線的圖形有________.(填序號(hào))
① ?、凇 ? ?、邸 ? ④
②④ [圖①中,直線GH∥MN;圖②中,G,H,N三點(diǎn)共面,但M?平面GHN,因此直線GH與MN異面;圖③中,連接MG,GM∥HN,因此GH與MN共面;圖④中,G,M,N共面,但H?平面GMN,因此GH與MN異面.所以在圖②④中,GH與MN異面.]
在直接判斷不好處理的情況下,反證法、模型法(如構(gòu)造幾何體:正方體、空間四邊形等)和特例排除法等是解決此類(lèi)問(wèn)題的三種常用便捷方法.
考點(diǎn)3 異面直線所成的角
1.平移法求異面直線所成角的一 15、般步驟
(1)作角——用平移法找(或作)出符合題意的角.
(2)求角——轉(zhuǎn)化為求一個(gè)三角形的內(nèi)角,通過(guò)解三角形,求出角的大?。?
提醒:異面直線所成的角θ∈.
2.坐標(biāo)法求異面直線所成的角:當(dāng)題設(shè)中含有兩兩垂直的三邊關(guān)系時(shí),常采用坐標(biāo)法.
提醒:如果求出的角是銳角或直角,則它就是要求的角;如果求出的角是鈍角,則它的補(bǔ)角才是要求的角.
(1)[一題多解](2018·全國(guó)卷Ⅱ)在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,AA1=,則異面直線AD1與DB1所成角的余弦值為( )
A. B.
C. D.
(2)如圖所示,A是△BCD所在平面外的一點(diǎn),E 16、,F(xiàn)分別是BC,AD的中點(diǎn).
①求證:直線EF與BD是異面直線;
②若AC⊥BD,AC=BD,求EF與BD所成的角.
(1)C [法一:(平移法)如圖,連接BD1,交DB1于O,取AB的中點(diǎn)M,連接DM,OM.易知O為BD1的中點(diǎn),所以AD1∥OM,則∠MOD為異面直線AD1與DB1所成角.因?yàn)樵陂L(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,AA1=,AD1==2,
DM==,
DB1==,所以O(shè)M=AD1=1,OD=DB1=,于是在△DMO中,由余弦定理,
得cos∠MOD==,
即異面直線AD1與DB1所成角的余弦值為.
故選C.
法二:(坐標(biāo)法)以D為坐標(biāo)原點(diǎn) 17、,DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示.由條件可知D(0,0,0),A(1,0,0),D1(0,0,),B1(1,1,),所以=(-1,0,),=(1,1,),則由向量夾角公式,得cos〈,〉===,即異面直線AD1與DB1所成角的余弦值為,故選C.
法三:(補(bǔ)體法)如圖,在長(zhǎng)方體ABCD-A1B1C1D1的一側(cè)補(bǔ)上一個(gè)相同的長(zhǎng)方體A′B′BA-A1′B1′B1A1.連接B1B′,由長(zhǎng)方體性質(zhì)可知,B1B′∥AD1,所以∠DB1B′為異面直線AD1與DB1所成的角或其補(bǔ)角.連接DB′,由題意,得DB′==,B′B1==2,DB1==.
在△DB′ 18、B1中,由余弦定理,得
DB′2=B′B+DB-2B′B1·DB1·cos∠DB1B′,
即5=4+5-2×2cos∠DB1B′,
∴cos∠DB1B′=.故選C.]
(2)[解]?、僮C明:假設(shè)EF與BD不是異面直線,則EF與BD共面,從而DF與BE共面,即AD與BC共面,所以A,B,C,D在同一平面內(nèi),這與A是△BCD所在平面外的一點(diǎn)相矛盾.故直線EF與BD是異面直線.
②取CD的中點(diǎn)G,連接EG,F(xiàn)G,則AC∥FG,EG∥BD,
所以相交直線EF與EG所成的角,
即為異面直線EF與BD所成的角.
又因?yàn)锳C⊥BD,則FG⊥EG.
在Rt△EGF中,由EG=FG
=A 19、C,求得∠FEG=45°,
即異面直線EF與BD所成的角為45°.
平移法、坐標(biāo)法和補(bǔ)體法是求兩條異面直線所成角的大小的三種常用方法,其中平移法和補(bǔ)體法的實(shí)質(zhì)是平行移動(dòng)直線,把異面直線所成的角轉(zhuǎn)化為相交直線的夾角,體現(xiàn)了化歸思想.
[教師備選例題]
1.(2016·全國(guó)卷Ⅰ)平面α過(guò)正方體ABCD-A1B1C1D1的頂點(diǎn)A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( )
A. B.
C. D.
A [如圖,設(shè)平面CB1D1∩平面ABCD=m1.
∵平面α∥平面CB1D1,∴m1∥m.
又平面ABC 20、D∥平面A1B1C1D1,
且平面CB1D1∩平面A1B1C1D1=B1D1,
∴B1D1∥m1.∴B1D1∥m.
∵平面ABB1A1∥平面DCC1D1,
且平面CB1D1∩平面DCC1D1=CD1,同理可證CD1∥n.
因此直線m與n所成的角即直線B1D1與CD1所成的角.
在正方體ABCD-A1B1C1D1中,△CB1D1是正三角形,
故直線B1D1與CD1所成角為60°,其正弦值為.]
2.(2017·全國(guó)卷Ⅲ)a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成6 21、0°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫(xiě)所有正確結(jié)論的編號(hào))
②③ [依題意建立如圖所示的空間直角坐標(biāo)系.設(shè)等腰直角三角形ABC的直角邊長(zhǎng)為1.
由題意知點(diǎn)B在平面xOy中形成的軌跡是以C為圓心,1為半徑的圓.
設(shè)直線a的方向向量為a=(0,1,0),直線b的方向向量為b=(1,0,0),以O(shè)x軸為始邊沿逆時(shí)針?lè)较蛐D(zhuǎn)的旋轉(zhuǎn)角為θ,θ∈[0,2π),則B(cos θ,sin θ,0),
∴=(cos θ,sin θ,-1 22、),||=.
設(shè)直線AB與a所成夾角為α,
則cos α==|sin θ|∈,
∴45°≤α≤90°,∴③正確,④錯(cuò)誤.
設(shè)直線AB與b所成夾角為β,
則cos β==|cos θ|.
當(dāng)直線AB與a的夾角為60°,即α=60°時(shí),
則|sin θ|=cos α=cos 60°=,
∴|cos θ|=.∴cos β=|cos θ|=.
∵0°≤β≤90°,∴β=60°,即直線AB與b的夾角為60°.
∴②正確,①錯(cuò)誤.]
1. (2019·聊城一模)如圖,圓柱的軸截面ABCD為正方形,E為弧的中點(diǎn),則異面直線AE與BC所成角的余弦值為( )
A. B.
C. D. 23、
D [取BC的中點(diǎn)H,連接EH,AH,∠EHA=90°,設(shè)AB=2,則BH=HE=1,AH=,所以AE=,連接ED,ED=,因?yàn)锽C∥AD,所以異面直線AE與BC所成角即為∠EAD,在△EAD中cos∠EAD==,故選D.]
2.(2019·西安模擬)如圖是正四面體的平面展開(kāi)圖,G,H,M,N分別為DE,BE,EF,EC的中點(diǎn),在這個(gè)正四面體中,①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個(gè)命題中,正確命題的序號(hào)是________.
②③④ [還原成正四面體A-DEF,其中H與N重合,A,B,C三點(diǎn)重合.
易知GH與EF異面,BD與MN異面.
連接GM,∵△GMH為等邊三角形,
∴GH與MN成60°角,
易證DE⊥AF,又MN∥AF,
∴MN⊥DE.
因此正確命題的序號(hào)是②③④.]
12
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備采購(gòu)常用的四種評(píng)標(biāo)方法
- 車(chē)間員工管理須知(應(yīng)知應(yīng)會(huì))
- 某公司設(shè)備維護(hù)保養(yǎng)工作規(guī)程
- 某企業(yè)潔凈車(chē)間人員進(jìn)出管理規(guī)程
- 企業(yè)管理制度之5S管理的八個(gè)口訣
- 標(biāo)準(zhǔn)化班前會(huì)的探索及意義
- 某企業(yè)內(nèi)審員考試試題含答案
- 某公司環(huán)境保護(hù)考核管理制度
- 現(xiàn)場(chǎng)管理的定義
- 員工培訓(xùn)程序
- 管理制度之生產(chǎn)廠長(zhǎng)的職責(zé)與工作標(biāo)準(zhǔn)
- 某公司各級(jí)專(zhuān)業(yè)人員環(huán)保職責(zé)
- 企業(yè)管理制度:5S推進(jìn)與改善工具
- XXX公司環(huán)境風(fēng)險(xiǎn)排查及隱患整改制度
- 生產(chǎn)車(chē)間基層管理要點(diǎn)及建議