2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法

上傳人:xt****7 文檔編號:105253856 上傳時間:2022-06-11 格式:DOC 頁數(shù):6 大?。?.29MB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法_第1頁
第1頁 / 共6頁
2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法_第2頁
第2頁 / 共6頁
2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學 常見題型解法歸納反饋訓練 第05講 函數(shù)解析式的求法 【知識要點】 一、求函數(shù)的解析式的主要方法有以下五種: 1、待定系數(shù)法:如果已知函數(shù)解析式的類型(函數(shù)是二次函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)等)時,可以用待定系數(shù)法. 2、代入法:如果已知原函數(shù)的解析式,求復合函數(shù)的解析式時,可以用代入法. 3、換元法:如果已知復合函數(shù)的解析式,求原函數(shù)的解析式時,可以用換元法.換元時,注意新“元”的范圍. 4、解方程組法:如果已知抽象函數(shù)滿足的關系式中有互為相反的自變量或互為倒數(shù)的自變量時,可以用解方程組的方法. 5、實際問題法:在實際問題中,根據(jù)函數(shù)的意義求出函數(shù)的解析式.

2、【方法講評】 方法一 待定系數(shù)法 使用情景 已知函數(shù)的類型. 解題步驟 根據(jù)已知先設出函數(shù)的解析式,再列方程(組)求待定系數(shù). 【例1】已知是一次函數(shù),且滿足,求. 【點評】(1)本題由于已知函數(shù)的類型是一次函數(shù),所以可以利用待定系數(shù)法求函數(shù)的解析式.(2) 由于對于定義域內(nèi)的任意一個值都成立,所以最后的 實際上是一個恒等式,所以可以比較等式兩邊的系數(shù)分別相等列方程組. 【例2】已知函數(shù)(的圖形的一個最高點為(2,),由這個最高點到相鄰的最低點時曲線經(jīng)過(6,0),求這個函數(shù)的解析式. 【解析】由題得 【點評】(1)對于三角函數(shù),待定系數(shù)法同樣適用,

3、關鍵是通過已知條件找到關于待定系數(shù)的方程 (組).(2)對于三角函數(shù)來說,一般利用最小正周期得到的方程,利用最值得到的方程,利用最值點得到的方程. 【反饋檢測1】已知為二次函數(shù),且 ,且,圖象在軸上截得的線段長為2,求的解析式. 方法二 代入法 使用情景 (1)已知原函數(shù)的解析式,求復合函數(shù)的解析式;(2)已知某區(qū)間的函數(shù)的解析式,求對稱區(qū)間的解析式. 解題步驟 (1)直接代入原函數(shù)的解析式即可;(2)一般先在所求的函數(shù)的圖像上任意取一點,然后求出它的對稱點的坐標,再把對稱點的坐標代入對稱點滿足的方程. 【例3】已知函數(shù),求函數(shù)的表達式. 【解析】由題得 【點

4、評】本題就是已知原函數(shù)的解析式,求復合函數(shù)的解析式,所以只需直接用“”代換原函數(shù)中的“”即可.這就是代入法求函數(shù)的解析式. 【例4】已知函數(shù)是定義在上的奇函數(shù),且當時,,求當時,的函數(shù)解析式. 【點評】本題就是已知某區(qū)間的函數(shù)的解析式,求對稱區(qū)間的解析式. 一般先在所求的函數(shù)的圖像上 任意取一點,然后求出它的對稱點的坐標,再把對稱點的坐標代入對稱點滿足的方程.這是高中數(shù)學常見到的一種題型,要好好地理解和掌握. 【反饋檢測2】設函數(shù)的圖象為,關于點對稱的圖象為, 求對應的函數(shù)的表達式. 方法三 換元法 使用情景 已知復合函數(shù)的解析式,求原函數(shù)的解析式. 解題步驟

5、 先換元,求出函數(shù)的自變量的表達式,再代入復合函數(shù)得到函數(shù)的解析式. 【例5】已知,求. 【解析】令(),則,∴, 所以. 【點評】(1)本題就是已知復合函數(shù)的解析式,求原函數(shù)的解析式.一般先換元,再求出函數(shù)的自變量的表達式,再代入復合函數(shù)得到函數(shù)的解析式.(2)換元時,一定要注意新元的取值范圍,它就是所求函數(shù)的定義域. 【反饋檢測3】 已知求的解析式. 方法四 解方程組法 使用情景 已知抽象函數(shù)滿足的關系式中有互為相反的自變量或互為倒數(shù)的自變量. 解題步驟 利用已知構(gòu)造另一個方程,得到一個方程組,解方程組即可. 【例6】已知滿足,求. 【解析】 ①,把①

6、中的換成,得 ②, ①②得,∴. 【點評】在已知的方程中有自變量和,它們互為倒數(shù),所以可以把方程中的地方統(tǒng)一換成,從而又得到一個關于的方程,解關于的方程組即可. 【反饋檢測5】定義在區(qū)間上的函數(shù)滿足,求的表達式. 方法五 實際問題法 使用情景 實際問題 解題步驟 一般情況下根據(jù)函數(shù)的意義求出函數(shù)的解析式,要注意函數(shù)的定義域. 【例7】某人開汽車以的速度從地到遠處的地,在地停留后,再以 的速度返回地,把汽車離開地的路程表示為時間(從地出發(fā)是開始)的函數(shù),再把車速表示為時間的函數(shù). 【點評】實際問題中求函數(shù)的解析式難度比較大,一般要認真讀題,再根據(jù)函數(shù)的

7、意義、自變量的意義及其它們之間的關系建立它們之間的函數(shù)關系.在寫函數(shù)的解析式時,要注意函數(shù)的定義域. 【反饋檢測6】 某公司生產(chǎn)一種產(chǎn)品的固定成本為萬元,但每生產(chǎn)件需要增加投入萬元,市場對此產(chǎn)品的需要量為件,銷售收入為函數(shù) 萬元,其中是產(chǎn)品售出的數(shù)量(單位:百件). (1)把利潤表示為年產(chǎn)量的函數(shù); (2)年產(chǎn)量為多少時,當年公司所得利潤最大. 高中數(shù)學常見題型解法歸納及反饋檢測第05講:函數(shù)解析式的求法 參考答案 【反饋檢測1答案】 【反饋檢測1詳細解析】 【反饋檢測2答案】 【反饋檢測2詳細解析】設是函數(shù)圖象上任一點 ,則關于對稱點為在 上,即:即: 故. 【反饋檢測3答案】 【反饋檢測5答案】 【反饋檢測5詳細解析】 【反饋檢測6答案】(1)(2)當年產(chǎn)量為件時,公司所得利潤最大. (2)當時, ∴當年產(chǎn)量為件時,公司所得利潤最大, ∵該產(chǎn)品最多賣出件, ∴根據(jù)問題的實際意義可得,當年產(chǎn)量為件時,公司所得利潤最大.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!