高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文

上傳人:xt****7 文檔編號(hào):105224916 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):16 大?。?89.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文_第1頁(yè)
第1頁(yè) / 共16頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文_第2頁(yè)
第2頁(yè) / 共16頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文_第3頁(yè)
第3頁(yè) / 共16頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 熟練規(guī)范 中檔大題保高分 第21練 三角函數(shù)的圖象與性質(zhì)練習(xí) 文 [明考情] 三角函數(shù)的圖象和性質(zhì)是高考的熱點(diǎn),在解答題中和解三角形綜合考查或單獨(dú)命題,難度一般為中低檔. [知考向] 1.三角函數(shù)的最值問(wèn)題. 2.三角函數(shù)的圖象及應(yīng)用. 3.三角函數(shù)圖象與性質(zhì)的綜合應(yīng)用. 考點(diǎn)一 三角函數(shù)的最值問(wèn)題 方法技巧 求解三角函數(shù)最值的常用方法 (1)有界性法:將y=asin x+bcos x+c化為y=sin (x+φ)+c.然后利用正弦函數(shù)的有界性求解. (2)換元法:對(duì)于y=asin2x+bsin x+c(或y=asin xcos x+b(sin

2、 x±cos x)+c)型的函數(shù)最值,可設(shè)t=sin x(或t=sin x±cos x). (3)利用數(shù)形結(jié)合或單調(diào)性. 1.(xx·浙江)已知函數(shù)f(x)=sin2x-cos2x-2sin xcos x(x∈R). (1)求f?的值; (2)求f(x)的最小正周期及單調(diào)遞增區(qū)間. 解 (1)由sin =,cos =-, 得f?=2-2-2××,所以f?=2. (2)由cos 2x=cos2x-sin2x與sin 2x=2sin xcos x, 得f(x)=-cos 2x-sin 2x=-2sin. 所以f(x)的最小正周期是π. 由正弦函數(shù)的性質(zhì)得+2kπ≤2x+≤+2k

3、π,k∈Z, 解得+kπ≤x≤+kπ,k∈Z. 所以f(x)的單調(diào)遞增區(qū)間為(k∈Z). 2.已知函數(shù)f(x)=sinsin x-cos2x. (1)求f(x)的最小正周期和最大值; (2)討論f(x)在上的單調(diào)性. 解 (1)f(x)=sinsin x-cos2x =cos xsin x-(1+cos 2x)=sin 2x-cos 2x-=sin-, 因此f(x)的最小正周期為π,最大值為. (2)當(dāng)x∈時(shí),0≤2x-≤π, 從而當(dāng)0≤2x-≤,即≤x≤時(shí),f(x)單調(diào)遞增; 當(dāng)≤2x-≤π,即≤x≤時(shí),f(x)單調(diào)遞減. 綜上可知,f(x)在上單調(diào)遞增,在上單調(diào)遞減

4、. 3.已知函數(shù)f(x)=4cos ωxsin(ω>0)的最小正周期是π. (1)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間; (2)求f(x)在上的最大值和最小值. 解 (1)函數(shù)f(x)=4cos ωxsin =4cos ωx =2sin ωxcos ωx-2cos2ωx+1-1 =sin 2ωx-cos 2ωx-1=2sin-1, 且f(x)的最小正周期是=π,所以ω=1. 從而f(x)=2sin-1; 令-+2kπ≤2x-≤+2kπ,k∈Z, 解得-+kπ≤x≤+kπ,k∈Z, 所以函數(shù)f(x)在(0,π)上的單調(diào)遞增區(qū)間為和. (2)當(dāng)x∈時(shí),2x∈,

5、 所以2x-∈, 2sin∈, 所以當(dāng)2x-=,即x=時(shí),f(x)取得最小值-1; 當(dāng)2x-=,即x=時(shí),f(x)取得最大值1; 所以f(x)在上的最大值和最小值分別為1,-1. 4.是否存在實(shí)數(shù)a,使得函數(shù)y=sin2x+acos x+a-在閉區(qū)間上的最大值是1?若存在,則求出對(duì)應(yīng)的a的值;若不存在,請(qǐng)說(shuō)明理由. 解 y=-2++a-. 當(dāng)0≤x≤時(shí),0≤cos x≤1,令t=cos x,則0≤t≤1, y=-2++a-,0≤t≤1. ①當(dāng)0≤≤1,即0≤a≤2時(shí),則當(dāng)t=,即cos x=時(shí),ymax=+a-=1, 解得a=或a=-4(舍去),故a=; ②當(dāng)<0,即a<

6、0時(shí),則當(dāng)t=0,即cos x=0時(shí),ymax=a-=1, 解得a=, 由于a<0,故這種情況不存在滿足條件的a值; ③當(dāng)>1,即a>2時(shí),則當(dāng)t=1,即cos x=1時(shí),ymax=a+a-=1, 解得a=,由于<2,故這種情況下不存在滿足條件的a值. 綜上可知,存在a=符合題意. 考點(diǎn)二 三角函數(shù)的圖象及應(yīng)用 要點(diǎn)重組 三角函數(shù)圖象的對(duì)稱問(wèn)題 (1)y=Asin(ωx+φ)的對(duì)稱軸為x=(k∈Z),對(duì)稱中心為(k∈Z). (2)y=Acos(ωx+φ)的對(duì)稱軸為x=(k∈Z),對(duì)稱中心為(k∈Z). (3)y=Atan(ωx+φ)的對(duì)稱中心為(k∈Z). 方法技巧 (1

7、)代入法:把圖象上的一個(gè)已知點(diǎn)代入(此時(shí)A,ω,b已知)或代入圖象與直線y=b的交點(diǎn)求解(此時(shí)要注意交點(diǎn)在上升區(qū)間上還是在下降區(qū)間上). (2)五點(diǎn)法:確定φ值時(shí),往往尋找“五點(diǎn)法”中的某一個(gè)點(diǎn)作為突破口. 5.(xx·長(zhǎng)安區(qū)校級(jí)月考)已知函數(shù)f(x)=Asin(ωx+φ) 的部分圖象如圖所示. (1)求函數(shù)的解析式; (2)當(dāng)x∈時(shí),求函數(shù)y=f?-f?的最值. 解 (1)由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,T=-=, ∴T=2π,∴ω==1. 又f?=Asin=A,且0<φ<, ∴φ=; ∴f(0)=Asin =2, ∴A=4, ∴f(x)=4sin.

8、 (2)函數(shù)y=f?-f? =4sin-4sin =4sin-4sin =4×sin x+4×cos x-4cos x =2sin x-2cos x=4sin, 當(dāng)x∈時(shí),x-∈, ∴當(dāng)x-=-,即x=-時(shí),函數(shù)y取得最小值-4; 當(dāng)x-=-,即x=時(shí),函數(shù)y取得最大值-2. 6.已知函數(shù)f(x)=sin(2π-x)sin-cos2x+. (1)求f(x)的最小正周期和其圖象的對(duì)稱軸方程; (2)當(dāng)x∈時(shí),求f(x)的最小值和最大值. 解 (1)依題意,得f(x)=(-sin x)(-cos x)-cos2x+=sin xcos x-cos2x+=sin 2x-(cos

9、2x+1)+=sin 2x-cos 2x+=sin+,所以f(x)的最小正周期為T==π. 令2x-=kπ+(k∈Z),得x=+(k∈Z), 故所求對(duì)稱軸方程為x=+(k∈Z). (2)當(dāng)0≤x≤時(shí),-≤2x-≤, 由函數(shù)圖象可知-≤sin≤1, 即0≤sin+≤. 于是f(x)的最小值為0,最大值為. 7.設(shè)函數(shù)f(x)=sin x+sin. (1)求f(x)的最小值,并求使f(x)取得最小值時(shí)的x的集合; (2)說(shuō)明函數(shù)y=f(x)的圖象可由y=sin x的圖象經(jīng)過(guò)怎樣的變化得到(不用畫圖). 解 (1)因?yàn)閒(x)=sin x+sin xcos +cos xsin =

10、sin x+sin x+cos x=sin x+cos x, 所以由輔助角公式,得f(x)=sin. 當(dāng)sin=-1時(shí),f(x)min=-,此時(shí)x+=+2kπ(k∈Z),所以x=+2kπ(k∈Z). 所以f(x)的最小值為-, 此時(shí)x的集合為. (2)將函數(shù)y=sin x圖象上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到y(tǒng)=sin x的圖象;再將y=sin x的圖象向左平移個(gè)單位長(zhǎng)度,得到f(x)=sin的圖象. 8.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表: ωx+φ 0 π 2π x

11、 Asin(ωx+φ) 0 5 -5 0 (1) 請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式; (2) 將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為,求θ的最小值. 解 (1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=-.數(shù)據(jù)補(bǔ)全如下表: ωx+φ 0 π 2π x Asin(ωx+φ) 0 5 0 -5 0 且函數(shù)表達(dá)式為f(x)=5sin. (2)由(1)知,f(x)=5sin, 得g(x)=5sin. 因?yàn)楹?/p>

12、數(shù)y=sin x的圖象的對(duì)稱中心為(kπ,0),k∈Z. 令2x+2θ-=kπ,解得x=+-θ,k∈Z. 由于函數(shù)y=g(x)的圖象關(guān)于點(diǎn)成中心對(duì)稱, 令+-θ=,解得θ=-,k∈Z, 由θ>0可知,當(dāng)k=1時(shí),θ取得最小值. 考點(diǎn)三 三角函數(shù)圖象與性質(zhì)的綜合應(yīng)用 方法技巧 求解三角函數(shù)問(wèn)題的兩個(gè)思想 (1)整體思想:對(duì)于y=Asin(ωx+φ)的性質(zhì),可將ωx+φ視為一個(gè)整體,設(shè)t=ωx+φ,解y=Asin t,通過(guò)研究復(fù)合函數(shù)的性質(zhì)達(dá)到求解目標(biāo). (2)數(shù)形結(jié)合思想:結(jié)合函數(shù)的圖象研究三角函數(shù)性質(zhì). 9.設(shè)函數(shù)f(x)=2cos2x+sin 2x+a(a∈R). (1)

13、求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間; (2)當(dāng)x∈時(shí),f(x)的最大值為2,求a的值,并求出y=f(x)(x∈R)的對(duì)稱軸方程. 解 (1)f(x)=2cos2x+sin 2x+a=1+cos 2x+sin 2x+a=sin+1+a, 則f(x)的最小正周期T==π, 且當(dāng)2kπ-≤2x+≤2kπ+(k∈Z), 即kπ-≤x≤kπ+(k∈Z)時(shí),f(x)單調(diào)遞增. 所以(k∈Z)為f(x)的單調(diào)遞增區(qū)間. (2)當(dāng)x∈時(shí),≤2x+≤, 當(dāng)2x+=,即x=時(shí),sin=1. 所以f(x)max=+1+a=2?a=1-. 由2x+=kπ+(k∈Z),得x=+(k∈Z),

14、故y=f(x)的對(duì)稱軸方程為x=+,k∈Z. 10.已知向量a=(m,cos 2x),b=(sin 2x,n), 函數(shù)f(x)=a·b,且y=f(x)的圖象過(guò)點(diǎn)和點(diǎn). (1)求m,n的值; (2)將y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位長(zhǎng)度后得到函數(shù)y=g(x)的圖象,若y=g(x)圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)遞增區(qū)間. 解 (1)由題意知,f(x)=a·b=msin 2x+ncos 2x. 因?yàn)閥=f(x)的圖象過(guò)點(diǎn)和點(diǎn), 所以 即解得 (2)由(1)知,f(x)=sin 2x+cos 2x=2sin. 由題意知,g(x)=

15、f(x+φ)=2sin. 設(shè)y=g(x)的圖象上符合題意的最高點(diǎn)為(x0,2), 由題意知,x+1=1,所以x0=0, 即y=g(x)圖象上到點(diǎn)(0,3)的距離為1的最高點(diǎn)為(0,2). 將其代入y=g(x),得sin=1, 因?yàn)?<φ<π,所以φ=, 所以g(x)=2sin=2cos 2x. 由2kπ-π≤2x≤2kπ,k∈Z,得kπ-≤x≤kπ,k∈Z, 所以函數(shù)y=g(x)的單調(diào)遞增區(qū)間為,k∈Z. 11.已知函數(shù)f(x)=Asin(ωx+φ) 的部分圖象如圖所示,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為坐標(biāo)原點(diǎn).若OQ=4,OP=,PQ=. (1)求函數(shù)y

16、=f(x)的解析式; (2)將函數(shù)y=f(x)的圖象向右平移2個(gè)單位長(zhǎng)度后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,3]時(shí),求函數(shù)h(x)=f(x)·g(x)的值域. 解 (1)在△OPQ中,cos∠POQ===, ∴sin∠POQ==, ∴P(1,2), 所以A=2,周期T=4×(4-1)=12, 又=12,則ω=. 將點(diǎn)P(1,2)代入f(x)=2sin, 得sin=1, 因?yàn)?<φ<,所以φ=, 所以f(x)=2sin. (2)由題意,可得g(x)=2sin x. 所以h(x)=f(x)·g(x)=4sin·sin x=2sin2x+2sin x·cos x=1-c

17、os x+sin x=1+2sin. 當(dāng)x∈[0,3]時(shí),x-∈, 所以sin∈, 所以函數(shù)h(x)的值域?yàn)閇0,3]. 12.已知向量a=(2cos x,sin x),b=(cos x,2cos x),函數(shù)f(x)=a·b+m(m∈R),且當(dāng)x∈時(shí),f(x)的最小值為2. (1)求f(x)的單調(diào)遞增區(qū)間; (2)先將函數(shù)y=f(x)圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的,再把所得的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間上的所有根之和. 解 f(x)=2cos2x+2sin x·cos x+m=cos 2x+sin 2x+m+1=2+m

18、+1=2sin+m+1. 因?yàn)楫?dāng)x∈時(shí),2x+∈,所以當(dāng)x=時(shí),f(x)取得最小值-1+m+1=2,所以m=2,所以f(x)=2sin+3. (1)令2kπ-≤2x+≤2kπ+(k∈Z),得f(x)的單調(diào)遞增區(qū)間為(k∈Z). (2)將f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的,得函數(shù)圖象對(duì)應(yīng)的解析式為y=2sin+3,再把所得的圖象向右平移個(gè)單位長(zhǎng)度得函數(shù)圖象對(duì)應(yīng)的解析式為g(x)=2sin+3. 由g(x)=4,得sin=,解得4x-=2kπ+或2kπ+,即x=+或+(k∈Z). 因?yàn)閤∈,所以x=或, 故所求所有根之和為+=. 例 (12分)已知m=(c

19、os ωx,cos(ωx+π)),n=(sin ωx,cos ωx),其中ω>0,f(x)=m·n,且f(x)相鄰兩條對(duì)稱軸之間的距離為. (1)若f?=-,α∈,求cos α的值; (2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,然后向左平移個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間. 審題路線圖 (1) (2) 規(guī)范解答·評(píng)分標(biāo)準(zhǔn) 解 f(x)=m·n=cos ωxsin ωx+cos(ωx+π)cos ωx=cos ωxsin ωx-cos ωxcos ωx =-=sin-. …………………………………………………

20、…………………………………………3分 ∵f(x)相鄰兩條對(duì)稱軸之間的距離為, ∴T=π,∴ω=1,∴f(x)=sin-.……………………………………………4分 (1)f =sin-=-, ∴sin=, ∵α∈,sin=,∴α-∈,∴cos=.…………6分 ∴cos α=cos=coscos -sinsin =×-×=.…………………………………………………………8分 (2)f(x)經(jīng)過(guò)變換可得g(x)=sin-,…………………………………………10分 令-+2kπ≤x-≤+2kπ,k∈Z,解得-+2kπ≤x≤+2kπ,k∈Z, ∴g(x)的單調(diào)遞增區(qū)間是,k∈Z. ……

21、………………………………………………………………………………………12分 構(gòu)建答題模板 [第一步] 化簡(jiǎn)變形:利用輔助角公式將三角函數(shù)化成y=Asin(ωx+φ)形式. [第二步] 整體代換:將“ωx+φ”看作一個(gè)整體,研究三角函數(shù)性質(zhì). [第三步] 回顧反思:查看角的范圍對(duì)函數(shù)影響,評(píng)價(jià)結(jié)果的合理性,檢查步驟的規(guī)范化. 1.(xx·河西區(qū)一模)已知函數(shù)f(x)=2sin·cos+sin 2x-1. (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)若將f(x)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值和最小值,并求出取得最值時(shí)的x值. 解 

22、(1)函數(shù)f(x)=2sincos+sin 2x-1=sin+sin 2x-1=cos 2x+sin 2x-1=2sin-1, 令2kπ-≤2x+≤2kπ+,求得kπ-≤x≤kπ+, 可得函數(shù)的單調(diào)遞增區(qū)間為,k∈Z. (2)若將f(x)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)=2sin-1=2cos-1的圖象, 在區(qū)間上,2x+∈,故當(dāng)2x+=π時(shí),即x=時(shí),函數(shù)取得最小值-2-1=-3; 當(dāng)2x+=,即x=0時(shí),函數(shù)取得最大值-1. 2.已知函數(shù)f(x)=sin2x-sin2,x∈R. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間上的最大值和最小值. 解 (1

23、)由已知,有f(x)=- =-cos 2x=sin 2x-cos 2x=sin. 所以f(x)的最小正周期T==π. (2)令-+2kπ≤2x-≤+2kπ,k∈Z, 得-+kπ≤x≤+kπ,k∈Z, 可知函數(shù)f(x)在(k∈Z)上單調(diào)遞增;令-+2kπ≤2x-≤-+2kπ,k∈Z,得-+kπ≤x≤-+kπ,k∈Z,可知函數(shù)f(x)在(k∈Z)上單調(diào)遞減. 所以f(x)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),f =-, f =-,f =, 所以f(x)在區(qū)間上的最大值為,最小值為-. 3.(xx·天津)已知函數(shù)f(x)=4tan xsin·cos-. (1)求f(x)的定義域與最

24、小正周期; (2)討論f(x)在區(qū)間上的單調(diào)性. 解 (1)f(x)的定義域?yàn)? f(x)=4tan xcos xcos-=4sin xcos- =4sin x-=2sin xcos x+2sin2x- =sin 2x+(1-cos 2x)-=sin 2x-cos 2x=2sin. 所以f(x)的最小正周期T==π. (2)令z=2x-,則函數(shù)y=2sin z的單調(diào)遞增區(qū)間是,k∈Z. 由-+2kπ≤2x-≤+2kπ,k∈Z, 得-+kπ≤x≤+kπ,k∈Z. 設(shè)A=,B=,易知A∩B=. 所以當(dāng)x∈時(shí),f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減. 4.(xx·宣城二模

25、)已知向量m=(2acos x,sin x),n=(cos x,bcos x),函數(shù)f(x)=m·n-,函數(shù)f(x)在y軸上的截距為,函數(shù)f(x)與y軸最近的最高點(diǎn)的坐標(biāo)是. (1)求函數(shù)f(x)的解析式; (2)將函數(shù)f(x)的圖象向左平移φ(φ>0)個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)y=sin x的圖象,求φ的最小值. 解 (1)f(x)=m·n-=2acos2x+bsin xcos x-, 由f(0)=2a-=,得a=,此時(shí),f(x)=cos 2x+sin 2x, 由f(x)≤=1,得b=1或b=-1, 當(dāng)b=1時(shí),f(x)=sin,經(jīng)檢

26、驗(yàn)為最高點(diǎn); 當(dāng)b=-1時(shí),f(x)=sin,經(jīng)檢驗(yàn)不是最高點(diǎn),故舍去. 故函數(shù)的解析式為f(x)=sin. (2)函數(shù)f(x)的圖象向左平移φ個(gè)單位長(zhǎng)度后得到函數(shù)y=sin的圖象;橫坐標(biāo)伸長(zhǎng)到原長(zhǎng)的2倍后,得到函數(shù)y=sin的圖象, 所以2φ+=2kπ(k∈Z),φ=-+kπ(k∈Z), 因?yàn)棣眨?,所以φ的最小值為. 5.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cos x的圖象經(jīng)如下變換得到:先將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度. (1)求函數(shù)f(x)的解析式,并求其圖象的對(duì)稱軸方程; (2)已知關(guān)于x的方程

27、f(x)+g(x)=m在[0,2π)內(nèi)有兩個(gè)不同的解α,β. ①求實(shí)數(shù)m的取值范圍. ②證明:cos(α-β)=-1. (1)解 將g(x)=cos x的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)得到y(tǒng)=2cos x的圖象,再將y=2cos x的圖象向右平移個(gè)單位長(zhǎng)度得到y(tǒng)=2cos的圖象, 故f(x)=2cos=2sin x. 從而函數(shù)f(x)=2sin x圖象的對(duì)稱軸方程為x=kπ+(k∈Z). (2)①解 f(x)+g(x)=2sin x+cos x==sin(x+φ) . 依題意,sin(x+φ)=在[0,2π)內(nèi)有兩個(gè)不同的解α,β當(dāng)且僅當(dāng)<1,故m的取值范圍是(-,). ②證明 因?yàn)棣?,β是方程sin(x+φ)=m在[0,2π)內(nèi)的兩個(gè)不同的解, 所以sin(α+φ)=,sin(β+φ)= . 當(dāng)0≤m<時(shí),α+β=2,即α-β=π-2(β+φ); 當(dāng)-<m<0時(shí),α+β=2,即α-β=3π-2(β+φ), 所以cos(α-β)=-cos 2(β+φ)=2sin2(β+φ)-1=22-1=-1.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!