2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 突破熱點(diǎn) 分層教學(xué) 專項(xiàng)二 專題七 1 第1講 坐標(biāo)系與參數(shù)方程學(xué)案
《2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 突破熱點(diǎn) 分層教學(xué) 專項(xiàng)二 專題七 1 第1講 坐標(biāo)系與參數(shù)方程學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 突破熱點(diǎn) 分層教學(xué) 專項(xiàng)二 專題七 1 第1講 坐標(biāo)系與參數(shù)方程學(xué)案(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1講 坐標(biāo)系與參數(shù)方程 年份 卷別 考查內(nèi)容及考題位置 命題分析 2018 卷Ⅰ 極坐標(biāo)及其應(yīng)用·T22 1.坐標(biāo)系與參數(shù)方程是高考的選考內(nèi)容之一,高考考查的重點(diǎn)主要有兩個(gè)方面:一是簡(jiǎn)單曲線的極坐標(biāo)方程;二是參數(shù)方程、極坐標(biāo)方程與曲線的綜合應(yīng)用. 2.全國(guó)課標(biāo)卷對(duì)此部分內(nèi)容的考查以解答題形式出現(xiàn),難度中等,備考此部分內(nèi)容時(shí)應(yīng)注意轉(zhuǎn)化思想的應(yīng)用. 卷Ⅱ 參數(shù)方程及其應(yīng)用·T22 卷Ⅲ 參數(shù)方程及其應(yīng)用·T22 2017 卷Ⅰ 參數(shù)方程與普通方程的互化、點(diǎn)到直線的距離·T22 卷Ⅱ 直角坐標(biāo)與極坐標(biāo)的互化、動(dòng)點(diǎn)軌跡方程的求法、三角形面積的最值問(wèn)題·T22
2、 卷Ⅲ 直線的參數(shù)方程與極坐標(biāo)方程、動(dòng)點(diǎn)軌跡方程的求法·T22 2016 卷Ⅰ 參數(shù)方程與普通方程的互化、極坐標(biāo)方程與直角坐標(biāo)方程的互化及應(yīng)用·T23 卷Ⅱ 極坐標(biāo)方程與直角坐標(biāo)方程的互化及應(yīng)用、直線與圓的位置關(guān)系·T23 卷Ⅲ 參數(shù)方程、極坐標(biāo)方程及點(diǎn)到直線的距離、三角函數(shù)的最值·T23 極坐標(biāo)方程及其應(yīng)用(綜合型) 圓的極坐標(biāo)方程 若圓心為M(ρ0,θ0),半徑為r,則圓的方程為:ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0. 幾個(gè)特殊位置的圓的極坐標(biāo)方程: (1)當(dāng)圓心位于極點(diǎn),半徑為r:ρ=r; (2)當(dāng)圓心位于M(a,0),半徑為a:ρ=
3、2acos θ; (3)當(dāng)圓心位于M,半徑為a:ρ=2asin θ. 直線的極坐標(biāo)方程 若直線過(guò)點(diǎn)M(ρ0,θ0),且極軸與此直線所成的角為α,則它的方程為:ρsin(θ-α)=ρ0sin(θ0-α). 幾個(gè)特殊位置的直線的極坐標(biāo)方程: (1)直線過(guò)極點(diǎn):θ=θ0和θ=π+θ0; (2)直線過(guò)點(diǎn)M(a,0)且垂直于極軸:ρcos θ=a; (3)直線過(guò)點(diǎn)M且平行于極軸:ρsin θ=b. [典型例題] (2018·南昌模擬)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系. (1)求C的極坐標(biāo)方程; (2)若
4、直線l1,l2的極坐標(biāo)方程分別為θ=(ρ∈R),θ=(ρ∈R),設(shè)直線l1,l2與曲線C的交點(diǎn)為O,M,N,求△OMN的面積. 【解】 (1)由參數(shù)方程(θ為參數(shù)),得普通方程為x2+(y-2)2=4,所以C的極坐標(biāo)方程為ρ2cos2θ+ρ2sin2θ-4ρsin θ=0,即ρ=4sin θ. (2)不妨設(shè)直線l1:θ=(ρ∈R)與曲線C的交點(diǎn)為O,M,則ρM=|OM|=4sin=2. 又直線l2:θ=(ρ∈R)與曲線C的交點(diǎn)為O,N,則ρN=|ON|=4sin=2.又∠MON=,所以S△OMN=|OM||ON|=×2×2=2. (1)極坐標(biāo)方程與普通方程互化的技巧 ①巧用極坐標(biāo)
5、方程兩邊同乘以ρ或同時(shí)平方技巧,將極坐標(biāo)方程構(gòu)造成含有ρcos θ,ρsin θ,ρ2的形成,然后利用公式代入化簡(jiǎn)得到普通方程. ②巧借兩角和差公式,轉(zhuǎn)化ρsin(θ±α)或ρcos(θ±α)的結(jié)構(gòu)形式,進(jìn)而利用互化公式得到普通方程. ③將直角坐標(biāo)方程中的x換成ρcos θ,將y換成ρsin θ,即可得到其極坐標(biāo)方程. (2)求解與極坐標(biāo)有關(guān)問(wèn)題的主要方法 ①直接利用極坐標(biāo)系求解,可與數(shù)形結(jié)合思想配合使用. ②轉(zhuǎn)化為直角坐標(biāo)系,用直角坐標(biāo)求解.若結(jié)果要求的是極坐標(biāo),還應(yīng)將直角坐標(biāo)化為極坐標(biāo). [對(duì)點(diǎn)訓(xùn)練] 1.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C
6、的極坐標(biāo)方程為ρcos=1,M,N分別為曲線C與x軸,y軸的交點(diǎn). (1)寫(xiě)出曲線C的直角坐標(biāo)方程,并求M,N的極坐極; (2)設(shè)M,N的中點(diǎn)為P,求直線OP的極坐標(biāo)方程. 解:(1)因?yàn)棣裞os=1, 所以ρcos θ·cos+ρsin θ·sin=1. 又所以x+y=1, 即曲線C的直角坐標(biāo)方程為x+y-2=0,令y=0,則x=2;令x=0,則y=. 所以M(2,0),N. 所以M的極坐標(biāo)為(2,0),N的極坐標(biāo)為. (2)因?yàn)镸,N連線的中點(diǎn)P的直角坐標(biāo)為,所以P的極角為θ=, 所以直線OP的極坐標(biāo)方程為θ=(ρ∈R). 2.(2018·高考全國(guó)卷Ⅰ)在直角坐標(biāo)系x
7、Oy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2+2ρcos θ-3=0. (1)求C2的直角坐標(biāo)方程; (2)若C1與C2有且僅有三個(gè)公共點(diǎn),求C1的方程. 解:(1)由x=ρcos θ,y=ρsin θ得C2的直角坐標(biāo)方程為(x+1)2+y2=4. (2)由(1)知C2是圓心為A(-1,0),半徑為2的圓. 由題設(shè)知,C1是過(guò)點(diǎn)B(0,2)且關(guān)于y軸對(duì)稱的兩條射線.記y軸右邊的射線為l1,y軸左邊的射線為l2.由于B在圓C2的外面,故C1與C2有且僅有三個(gè)公共點(diǎn)等價(jià)于l1與C2只有一個(gè)公共點(diǎn)且l2與C2有兩個(gè)公共
8、點(diǎn),或l2與C2只有一個(gè)公共點(diǎn)且l1與C2有兩個(gè)公共點(diǎn). 當(dāng)l1與C2只有一個(gè)公共點(diǎn)時(shí),A到l1所在直線的距離為2,所以=2,故k=-或k=0.經(jīng)檢驗(yàn),當(dāng)k=0時(shí),l1與C2沒(méi)有公共點(diǎn);當(dāng)k=-時(shí),l1與C2只有一個(gè)公共點(diǎn),l2與C2有兩個(gè)公共點(diǎn). 當(dāng)l2與C2只有一個(gè)公共點(diǎn)時(shí),A到l2所在直線的距離為2,所以=2,故k=0或k=.經(jīng)檢驗(yàn),當(dāng)k=0時(shí),l1與 C2沒(méi)有公共點(diǎn);當(dāng)k=時(shí),l2與C2沒(méi)有公共點(diǎn).綜上,所求C1的方程為y=-|x|+2. 參數(shù)方程及其應(yīng)用(綜合型) 直線和圓錐曲線的參數(shù)方程和普通方程 點(diǎn)的 軌跡 普通方程 參數(shù)方程 直線 y-y0=tan
9、 α(x-x0) (t為參數(shù)) 圓 (x-x0)2+(y-y0)2=r2 (θ為參數(shù)) 橢圓 +=1(a>b>0) (φ為參數(shù)) 雙 曲 線 -=1(a>0,b>0) (φ為參數(shù)) 拋 物 線 y2=2px (t為參數(shù)) [典型例題] (2018·武漢調(diào)研)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C交于A,B兩點(diǎn). (1)求|AB|的值; (2)若F為曲線C的左焦點(diǎn),求·的值. 【解】 (1)由(θ為參數(shù)),消去參數(shù)θ得+=1. 由消去參數(shù)t得y=2x-4. 將y=2
10、x-4代入x2+4y2=16中,得17x2-64x+176=0. 設(shè)A(x1,y1),B(x2,y2),則 所以|AB|=|x1-x2|=×=,所以|AB|的值為. (2)由(1)得,F(xiàn)(-2,0),則 ·=(x1+2,y1)·(x2+2,y2) =(x1+2)(x2+2)+(2x1-4)(2x2-4) =x1x2+2(x1+x2)+12+4[x1x2-2(x1+x2)+12] =5x1x2-6(x1+x2)+60 =5×-6×+60 =44, 所以·的值為44. (1)有關(guān)參數(shù)方程問(wèn)題的2個(gè)關(guān)鍵點(diǎn) ①參數(shù)方程化為普通方程的關(guān)鍵是消參數(shù),要根據(jù)參數(shù)的特點(diǎn)進(jìn)行轉(zhuǎn)化.
11、 ②利用參數(shù)方程解決問(wèn)題,關(guān)鍵是選準(zhǔn)參數(shù),理解參數(shù)的幾何意義. (2)利用直線的參數(shù)方程中參數(shù)的幾何意義求解問(wèn)題 經(jīng)過(guò)點(diǎn)P(x0,y0),傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).若A,B為直線l上兩點(diǎn),其對(duì)應(yīng)的參數(shù)分別為t1,t2,線段AB的中點(diǎn)為M,點(diǎn)M所對(duì)應(yīng)的參數(shù)為t0,則以下結(jié)論在解題中經(jīng)常用到: ①t0=. ②|PM|=|t0|=. ③|AB|=|t2-t1|. ④|PA|·|PB|=|t1·t2|. [對(duì)點(diǎn)訓(xùn)練] 1.(2018·高考全國(guó)卷Ⅱ)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)). (1)求C和l的直角坐標(biāo)方程
12、; (2)若曲線C截直線l所得線段的中點(diǎn)坐標(biāo)為(1,2),求l的斜率. 解:(1)曲線C的直角坐標(biāo)方程為+=1. 當(dāng)cos α≠0時(shí),l的直角坐標(biāo)方程為y=tan α·x+2-tan α, 當(dāng)cos α=0時(shí),l的直角坐標(biāo)方程為x=1. (2)將l的參數(shù)方程代入C的直角坐標(biāo)方程,整理得關(guān)于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.?、? 因?yàn)榍€C截直線l所得線段的中點(diǎn)(1,2)在C內(nèi),所以①有兩個(gè)解,設(shè)為t1,t2,則t1+t2=0. 又由①得t1+t2=-, 故2cos α+sin α=0, 于是直線l的斜率k=tan α=-2. 2.已
13、知曲線C:+=1,直線l:(t為參數(shù)). (1)寫(xiě)出曲線C的參數(shù)方程,直線l的普通方程; (2)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值. 解:(1)曲線C的參數(shù)方程為(θ為參數(shù)).直線l的普通方程為2x+y-6=0. (2)曲線C上任意一點(diǎn)P(2cos θ,3sin θ)到l的距離為d=|4cos θ+3sin θ-6|. 則|PA|==|5sin(θ+α)-6|,其中α為銳角,且tan α=. 當(dāng)sin(θ+α)=-1時(shí),|PA|取得最大值,最大值為.當(dāng)sin(θ+α)=1時(shí),|PA|取得最小值,最小值為. 極坐標(biāo)方程與參
14、數(shù)方程的綜合問(wèn)題(綜合型) [典型例題] (2018·鄭州第二次質(zhì)量檢測(cè))在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且l過(guò)點(diǎn)A,曲線C1的參數(shù)方程為(α為參數(shù)). (1)求曲線C1上的點(diǎn)到直線l的距離的最大值; (2)過(guò)點(diǎn)B(-1,1)且與直線l平行的直線l1與曲線C1交于M,N兩點(diǎn),求|BM|·|BN|的值. 【解】 (1)由直線l過(guò)點(diǎn)A可得cos=a,故a=,則易得直線l的直角坐標(biāo)方程為x+y-2=0. 根據(jù)點(diǎn)到直線的距離公式可得曲線C1上的點(diǎn)到直線l的距離d==,其中sin φ=,cos φ=
15、, 所以dmax==. 即曲線C1上的點(diǎn)到直線l的距離的最大值為. (2)由(1)知直線l的傾斜角為, 則直線l1的參數(shù)方程為(t為參數(shù)). 易知曲線C1的普通方程為+=1. 把直線l1的參數(shù)方程代入曲線C1的普通方程可得t2+7t-5=0,設(shè)M,N兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,所以t1t2=-,根據(jù)參數(shù)t的幾何意義可知|BM|·|BN|=|t1t2|=. 解決極坐標(biāo)方程與參數(shù)方程綜合問(wèn)題的方法 (1)對(duì)于參數(shù)方程或極坐標(biāo)方程應(yīng)用不夠熟練的情況下,我們可以先化成直角坐標(biāo)的普通方程,這樣思路可能更加清晰. (2)對(duì)于一些運(yùn)算比較復(fù)雜的問(wèn)題,用參數(shù)方程計(jì)算會(huì)比較簡(jiǎn)捷. (
16、3)利用極坐標(biāo)方程解決問(wèn)題時(shí),要注意題目所給的限制條件及隱含條件. [對(duì)點(diǎn)訓(xùn)練] (2018·貴陽(yáng)模擬)在平面直角坐標(biāo)系xOy中,曲線C:(α為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos=-1. (1)求曲線C的普通方程和直線l的直角坐標(biāo)方程; (2)過(guò)點(diǎn)M(-1,0)且與直線l平行的直線l1交曲線C于A,B兩點(diǎn),求點(diǎn)M到A,B兩點(diǎn)的距離之和. 解:(1)曲線C的普通方程為+y2=1, 由ρcos=-1,得ρcos θ-ρsin θ=-2,所以直線l的直角坐標(biāo)方程為x-y+2=0. (2)直線l1的參數(shù)方程為(t為參數(shù)),將其代入
17、+y2=1中,化簡(jiǎn)得:2t2-t-2=0, 設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2, 則t1+t2=,t1t2=-1, 所以|MA|+|MB|=|t1|+|t2|=|t1-t2|===. 1.(2018·益陽(yáng)、湘潭調(diào)研)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos=.直線l與曲線C交于A,B兩點(diǎn). (1)求直線l的直角坐標(biāo)方程; (2)設(shè)點(diǎn)P(1,0),求|PA|·|PB|的值. 解:(1)由ρcos=得ρcos θcos -ρsin θsin =, 又ρcos θ=x,ρsin
18、 θ=y(tǒng), 所以直線l的直角坐標(biāo)方程為x-y-1=0. (2)由(α為參數(shù))得曲線C的普通方程為x2+4y2=4, 因?yàn)镻(1,0)在直線l上,故可設(shè)直線l的參數(shù)方程為(t為參數(shù)), 將其代入x2+4y2=4得7t2+4t-12=0, 所以t1·t2=-, 故|PA|·|PB|=|t1|·|t2|=|t1·t2|=. 2.(2018·合肥第一次質(zhì)量檢測(cè))在直角坐標(biāo)系xOy中,曲線C1:(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ-2cos θ=0. (1)求曲線C2的直角坐標(biāo)方程; (2)若曲線C1上有一動(dòng)點(diǎn)M,曲線C2上有一動(dòng)點(diǎn)N,求|MN|的最
19、小值. 解:(1)由ρ-2cos θ=0得ρ2-2ρcos θ=0. 因?yàn)棣?=x2+y2,ρcos θ=x,所以x2+y2-2x=0, 即曲線C2的直角坐標(biāo)方程為(x-1)2+y2=1. (2)由(1)可知,圓C2的圓心為C2(1,0),半徑為1. 設(shè)曲線C1的動(dòng)點(diǎn)M(3cos θ,2sin θ), 由動(dòng)點(diǎn)N在圓C2上可得|MN|min=|MC2|min-1. 因?yàn)閨MC2|==, 所以當(dāng)cos θ=時(shí),|MC2|min=, 所以|MN|min=|MC2|min-1=-1. 3.(2018·高考全國(guó)卷Ⅲ)在平面直角坐標(biāo)系xOy中,⊙O的參數(shù)方程為(θ為參數(shù)),過(guò)點(diǎn)(0,-
20、)且傾斜角為α的直線l與⊙O交于A,B兩點(diǎn). (1)求α的取值范圍; (2)求AB中點(diǎn)P的軌跡的參數(shù)方程. 解:(1)⊙O的直角坐標(biāo)方程為x2+y2=1. 當(dāng)α=時(shí),l與⊙O交于兩點(diǎn). 當(dāng)α≠時(shí),記tan α=k,則l的方程為y=kx-.l與⊙O交于兩點(diǎn)當(dāng)且僅當(dāng)<1, 解得k<-1或k>1, 即α∈或α∈. 綜上,α的取值范圍是. (2)l的參數(shù)方程為(t為參數(shù),<α<). 設(shè)A,B,P對(duì)應(yīng)的參數(shù)分別為tA,tB,tP,則tP=,且tA,tB滿足t2-2tsin α+1=0. 于是tA+tB=2sin α,tP=sin α. 又點(diǎn)P的坐標(biāo)(x,y)滿足 所以點(diǎn)P的軌跡
21、的參數(shù)方程是 (α為參數(shù),<α<). 4.(2018·昆明調(diào)研)在直角坐標(biāo)系xOy中,已知傾斜角為α的直線l過(guò)點(diǎn)A(2,1).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρ=2sin θ,直線l與曲線C分別交于P,Q兩點(diǎn). (1)寫(xiě)出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程; (2)若|PQ|2=|AP|·|AQ|,求直線l的斜率k. 解:(1)直線l的參數(shù)方程為(t為參數(shù)). 曲線C的直角坐標(biāo)方程為x2+y2=2y. (2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,得t2+(4cos α)t+3=0, 由Δ=(4cos α)2-4×3>0,得cos2
22、α>, 由根與系數(shù)的關(guān)系, 得t1+t2=-4cos α,t1·t2=3, 由參數(shù)的幾何意義知,|AP|=|t1|,|AQ|=|t2|,|PQ|=|t1-t2|, 由題意知,(t1-t2)2=t1·t2, 則(t1+t2)2=5t1·t2, 得(-4cos α)2=5×3, 解得cos2α=,滿足cos2α>, 所以sin2α=,tan2α=, 所以直線l的斜率k=tan α=±. 5.(一題多解)(2018·鄭州第一次質(zhì)量預(yù)測(cè))在平面直角坐標(biāo)系xOy中,直線l過(guò)點(diǎn)(1,0),傾斜角為α,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=. (1)
23、寫(xiě)出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程; (2)若α=,設(shè)直線l與曲線C交于A,B兩點(diǎn),求△AOB的面積. 解:(1)由題知直線l的參數(shù)方程為(t為參數(shù)). 因?yàn)棣眩剑? 所以ρsin2θ=8cos θ, 所以ρ2sin2θ=8ρcos θ,即y2=8x. (2)法一:當(dāng)α=時(shí),直線l的參數(shù)方程為(t為參數(shù)), 代入y2=8x可得t2-8t-16=0, 設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=8, t1·t2=-16, 所以|AB|=|t1-t2|==8. 又點(diǎn)O到直線AB的距離d=1×sin =, 所以S△AOB=|AB|×d=×8×=2. 法二:當(dāng)
24、α=時(shí),直線l的方程為y=x-1, 設(shè)M(1,0),A(x1,y1),B(x2,y2), 由得y2=8(y+1),即y2-8y-8=0, 由根與系數(shù)的關(guān)系得 S△AOB=|OM||y1-y2|=×1×=×=×4=2. 6.(2018·陜西教學(xué)質(zhì)量檢測(cè)(一))在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(t>0,α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin=3. (1)當(dāng)t=1時(shí),求曲線C上的點(diǎn)到直線l的距離的最大值; (2)若曲線C上的所有點(diǎn)都在直線l的下方,求實(shí)數(shù)t的取值范圍. 解:(1)由ρsin=3得ρsin θ+ρco
25、s θ=3,
把x=ρcos θ,y=ρsin θ代入得直線l的直角坐標(biāo)方程為x+y-3=0,
當(dāng)t=1時(shí),曲線C的參數(shù)方程為(α為參數(shù)),
消去參數(shù)得曲線C的普通方程為x2+y2=1,
所以曲線C為圓,且圓心為O,則點(diǎn)O到直線l的距離d==,
所以曲線C上的點(diǎn)到直線l的距離的最大值為1+.
(2)因?yàn)榍€C上的所有點(diǎn)均在直線l的下方,
所以對(duì)任意的α∈R,tcos α+sin α-3<0恒成立,
即cos(α-φ)<3恒成立,
所以<3,
又t>0,所以0 26、,t>0).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l:ρcos=.
(1)若l與曲線C沒(méi)有公共點(diǎn),求t的取值范圍;
(2)若曲線C上存在點(diǎn)到l的距離的最大值為+,求t的值.
解:(1)因?yàn)橹本€l的極坐標(biāo)方程為ρcos=,即ρcos θ+ρsin θ=2,
所以直線l的直角坐標(biāo)方程為x+y=2.
因?yàn)榍€C的參數(shù)方程為(α為參數(shù),t>0),
所以曲線C的普通方程為+y2=1(t>0),
由消去x得,(1+t2)y2-4y+4-t2=0,
所以Δ=16-4(1+t2)(4-t2)<0,
又t>0,所以0 27、直角坐標(biāo)方程為x+y-2=0,
故曲線C上的點(diǎn)(tcos α,sin α)到l的距離d=,
故d的最大值為,
由題設(shè)得=+.
解得t=±.
又t>0,所以t=.
8.(2018·濰坊模擬)在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos2θ=sin θ(ρ≥0,0≤θ<π).
(1)寫(xiě)出曲線C1的極坐標(biāo)方程,并求C1與C2交點(diǎn)的極坐標(biāo);
(2)射線θ=β與曲線C1,C2分別交于點(diǎn)A,B(A,B異于原點(diǎn)),求的取值范圍.
解:(1)由題意可得曲線C1的普通方程為x2+(y-2)2=4,
28、把x=ρcos θ,y=ρsin θ代入,得曲線C1的極坐標(biāo)方程為ρ=4sin θ,
聯(lián)立
得4sin θcos2θ=sin θ,此時(shí)0≤θ<π,
①當(dāng)sin θ=0時(shí),θ=0,ρ=0,得交點(diǎn)的極坐標(biāo)為(0,0);
②當(dāng)sin θ≠0時(shí),cos2θ=,當(dāng)cos θ=時(shí),θ=,ρ=2,得交點(diǎn)的極坐標(biāo)為,
當(dāng)cos θ=-時(shí),θ=,ρ=2,得交點(diǎn)的極坐標(biāo)為,
所以C1與C2交點(diǎn)的極坐標(biāo)為(0,0),,.
(2)將θ=β代入C1的極坐標(biāo)方程中,得ρ1=4sin β,
代入C2的極坐標(biāo)方程中,得ρ2=,
所以==4cos2β,因?yàn)椤堞隆埽?
所以1≤4cos2β≤3,所以的取值范圍為[1,3].
14
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見(jiàn)問(wèn)題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說(shuō)話方式
- 汽車(chē)銷售績(jī)效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營(yíng)銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩