輕型貨車變速器設計-三軸式四檔【三維UG模型】【含cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
畢業(yè)設計說明書
目 錄
前 言 1
第1章 變速器的概述 2
第2章 變速器的方案論證 5
2.1 變速器類型選擇及傳動方案設計 5
2.1.1 結構工藝性 5
2.1.2 變速器的徑向尺寸 5
2.1.3 變速器齒輪的壽命 5
2.2變速器傳動機構的分析 6
2.2.1 換擋結構形式的選擇 6
2.2.2倒擋的形式及布置方案 6
2.3 變速器操縱機構方案分析 8
2.3.1變速器操縱機構的功用 8
2.3.2 設計變速器操縱機構時,應該滿足的基本要求: 8
2.3.3換擋位置 8
2.4 齒輪形式的分析確定 8
2.5 齒輪副安排的分析確定 8
2.5.1 整車總布置 9
2.5.2 駕駛員的使用習慣 9
2.5.3 提高平均傳動效率 10
2.5.4改善齒輪受載狀況 10
3.1 變速器主要參數(shù)的選擇 12
3.1.1 擋數(shù) 12
3.1.2.各檔傳動比的確定與選擇 12
3.1.3 中心距A 13
3.2 齒輪參數(shù) 14
3.2.1 模數(shù)的確定 14
3.2.2壓力角α的確定 15
3.2.3斜齒輪螺旋角的確定 16
3.2.4齒寬b的確定 16
3.2.7 螺旋方向 21
3.2.8齒輪變位系數(shù)的選擇和計算 21
3.2.9變位系數(shù)的計算: 22
3.2.10 計算所得齒輪參數(shù) 22
3.3 變速器齒輪的校核 24
3.3.1 齒輪的損壞形式 24
3.3.2輪齒強度計算 24
3.4變速器軸的設計計算 26
3.4.1軸的功用及設計要求 26
3.4.2初選軸的直徑 27
3.4.3 軸的結構形式 28
3.4.4 軸的受力分析 29
3.4.6 軸的剛度校核 34
3.4.7軸上花鍵的設計計算 35
3.5 軸承的選擇 36
3.5.1 變速器軸承形式的選擇 36
3.5.3 軸承類型的選擇 37
4.1 同步器的功用及工作原理 39
4.2 同步器類型的選擇 39
4.3主要參數(shù)的確定 39
4.3.1摩擦因數(shù)f 39
4.3.2 同步環(huán)主要尺寸的確定 40
4.3.3 鎖止角β 41
4.3.4 同步時間t 41
4.3.5 轉動慣量的計算 41
5.1 鍵連接的類型 42
5.2 鍵的選擇 42
5.3 平鍵連接的強度校核 42
第6章 變速器總成的拆裝順序 43
6.1 變速器的裝配順序 43
6.1.1 領料(包括自制件、外購件和標準件) 43
6.1.2 零件清洗 43
6.1.3 部件總成裝配 43
6.2 變速器的拆卸 44
6.2 變速器的拆卸 44
畢業(yè)設計總結 45
致 謝 46
參考文獻 47
附錄 48
53
前 言
隨著汽車工業(yè)的不斷發(fā)展,汽車作為商品在全球都有廣闊的市場,因其生產批量大,帶給企業(yè)豐厚的利潤,具有很大的發(fā)展?jié)摿?。隨著我國國民經(jīng)濟的迅猛發(fā)展,人民生活水平的不斷提高,汽車進入普通家庭已經(jīng)是很普遍的事情了。
中國汽車工業(yè)的發(fā)展水平與當今汽車工業(yè)大國相比確實有很大差距,但在中國汽車市場具有巨大的發(fā)展前景。加入WTO,這對我們國家來說既是一個機遇,又是一個挑戰(zhàn),尤其是對汽車業(yè)。因此,如何設計出經(jīng)濟實惠、工作可靠、性能優(yōu)良、適合廣大消費者口味且適合中國國情的汽車已經(jīng)成為汽車設計者亟待解決的問題。作為新世紀的汽車工程本科畢業(yè)生,我們肩負重任。在大學畢業(yè),即將走向工作崗位之際,按國家教委的要求,進行這次畢業(yè)設計。畢業(yè)設計是對大學四年學習成果的一次檢驗,能夠充分體現(xiàn)了一個設計者的知識掌握程度和創(chuàng)新思想。畢業(yè)設計總體質量的好壞也直接體現(xiàn)了畢業(yè)生的獨立創(chuàng)造設計能力。本文主要介紹了中型貨車變速器的設計過程。由于此次畢業(yè)設計具有特殊的意義,我查閱了大量的專業(yè)資料,虛心向老師請教,在老師的指導下,獲得了許多設計方面的經(jīng)驗,并將老師的設計方法運用到自己的設計中。
此次設計的課程名稱:輕型載貨汽車變速設計。
設計參數(shù):發(fā)動機最大扭矩:210.9N·m; 一擋傳動比:5.568; 主減速器減速比:6.142。
設計要求:采用中間軸式、全同步器換擋,對各擋齒輪的接觸強度、彎曲應力及軸的強度、剛度進行校核計算。
設計工作量:
1、收集資料、進行方案論證、結構分析,確定合理的結構方案。
2、選擇正確的參數(shù),對變速器的強度及剛度進行校核計算。
3、三維建模,變速器部分零件結構圖(A1)一張。
4、設計中的計算要求編程,上機計算,打印程序、結果。
5、英譯中大于5000字符(折合中文約大于3000字)。
6、設計說明書應包括:目錄、中、英文摘要、設計說明、方案論證、計算過程、結論、畢業(yè)設計完成情況的自我評價及其它說明。要求大于1.2萬字。
第1章 變速器的概述
變速器主要通過改變傳動比,來滿足不同行駛條件對牽引力的需要,使發(fā)動機盡量工作在有利的工況下,滿足可能的行駛速度要求。還可以實現(xiàn)倒車行駛,用來滿足汽車倒退行駛的需要。此外可以中斷動力傳遞,在發(fā)動機起動,怠速運轉,汽車換檔或需要停車進行動力輸出時,中斷向驅動輪的動力傳遞。
為保證變速器具有良好的工作性能,對變速器應提出如下設計要求:
1. 正確選擇變速器的擋位數(shù)和傳動比,使之與發(fā)動機參數(shù)優(yōu)化匹配,以保證汽車具有良好的動力性與經(jīng)濟性。
2. 設置空擋以保證汽車在必要時能將發(fā)動機與傳動系長時間分離;設置倒擋使汽車可以倒退行駛。
3. 制造容易、成本低廉、維修方便、使用壽命長。
4. 貫徹零件標準化、部件通用化及總成系列化等設計要求,遵守有關標準規(guī)定。
5. 換擋迅速、方便、省力。
6.體積小、質量輕、承載能力強,工作可靠。
7. 傳動效率高,工作平穩(wěn)、工作噪聲低。
8.設置動力輸出裝置,需要時能進行功率輸出。
除此以外,變速器還應當滿足汽車有必要的動力性和經(jīng)濟性指標,這與變速器的擋數(shù)、傳動比范圍和各擋傳動比有關。汽車工作的道路條件越復雜,比功率越小,變速器的傳動比范圍越大。
變速器由變速傳動機構和操縱機構組成。
按傳動比變化方式可劃分為有級式、無級式和綜合式三種:
1.有級式變速器:有幾個可選擇的固定傳動比,采用齒輪傳動。又可分為齒輪軸線固定的普通齒輪變速器和部分齒輪(行星齒輪)軸線旋轉的行星齒輪變速器兩種。目前,轎車和輕、中型貨車變速器的傳動比通常有3~5個前進擋和一個倒擋;在重型貨車用的組合式變速器中,則有更多擋位。所謂變速器擋數(shù),均指前進擋位數(shù)。
2.無級式變速器的傳動比在一定的范圍內可按無限多級變化,常見的有電力式和液力式(動液式)兩種。電力式變速器在傳動系統(tǒng)中也有廣泛采用的趨勢,其變速器部件為直流串勵電動機。液力式變速器的傳動部件是液力變矩器。
3.綜合式變速器是指由液力變矩器和齒輪式有級變速器組成的液力機械式變速器,其傳動比可咋最大值和最小值之間的幾個間斷范圍內作無級變化,目前應用較多。
按操縱方式不同,變速器又可分為手動變速器(MT)、自動變速器(AT)和手自一體變速器(Tiptronic) 無極變速器CVT,DSG變速箱三種:
手動變速器,也稱手動擋,即用手撥動變速桿才能改變變速器內的齒輪嚙合位置,改變傳動比,從而達到變速的目的。踩下離合時,方可撥得動變速桿。
自動變速器,利用行星齒輪機構進行變速,它能根據(jù)油門踏板程度和車速變化,自動地進行變速。而駕駛者只需操縱加速踏板控制車速即可。
一般來講,汽車上常用的自動變速器有以下幾種類型:液力自動變速器、液壓傳動自動變速器、電力傳動自動變速器、有級式機械自動變速器和無級式機械自動變速器等。其中,最常見的是液力自動變速器。液力自動變速器主要是由液壓控制的齒輪變速系統(tǒng)構成,主要包含自動離合器和自動變速器兩大部分。它能夠根據(jù)油門的開度和車速的變化,自動地進行換擋。
電子控制自動變速器通常由液力變矩器、行星齒輪變速系統(tǒng)、換擋執(zhí)行器、液壓操縱系統(tǒng)、電子控制系統(tǒng)五部分
即手動/自動一體化變速箱,手動/自動可自由轉換,自動調節(jié)發(fā)動機轉速和擋位,同時擁有手動變速箱的駕駛樂趣和自動變速箱的便利性。它除了具有自動變速箱的D、3、2擋位外,只要把排擋桿推往左邊,即可以上下?lián)軇油瓿蛇M、退擋。此時駕駛員可以隨意選擇擋位,不受限于自動系統(tǒng)的自動擋位選擇,為了避免錯誤換擋所造成的發(fā)動機損傷,Tiptronic系統(tǒng)即使在手動模式下操作,若發(fā)動機轉速過高而駕駛員仍未換擋,電腦將適時介入執(zhí)行換擋;相反,駕駛員在不適當?shù)陌l(fā)動機轉速下?lián)Q擋,電腦也會立刻作出判斷,避免對車造成損傷。
CVT(ContinuosuslyVariableTransmission)技術即無級變速技術,它采用傳動帶和工作直徑可變的主、從動輪相配合來傳遞動力,可以實現(xiàn)傳動比的連續(xù)改變,從而得到傳動系與發(fā)動機工況的最佳匹配。常見的無級變速器有液力機械式無級變速器和金屬帶式無級變速器(VDT-CVT)。
自動變速器是為了簡便操作、降低駕駛疲勞而生的,按齒輪變速系統(tǒng)的控制方式,它可以分為液控液壓自動變速器和電控液壓自動變速器;按傳動比的變化方式又可分為有級式自動變速器和無級式自動變速器。因此,無級變速器實際上是自動變速器的一種,但它比常見的自動變速器要復雜得多,技術上也更為先進。
無級變速器與常見的液壓自動變速器最大的不同是在結構上,后者是由液壓控制的齒輪變速系統(tǒng)構成,還是有擋位的,它所能實現(xiàn)的是在兩擋之間的無級變速,而無級變速器則是兩組變速輪盤和一條傳動帶組成的,比傳統(tǒng)自動變速器結構簡單,體積更小。另外,它可以自由改變傳動比,從而實現(xiàn)全程無級變速,使車速變化更為平穩(wěn),沒有傳統(tǒng)變速器換擋時那種“頓”的感覺。
第2章 變速器的方案論證
2.1 變速器類型選擇及傳動方案設計
變速器的種類很多,按其傳動比變化方式不同可以分為有級式、無級式和綜合式三種。有級式變速器根據(jù)前進擋數(shù)的不同,可以分為三、四、五擋和多擋變速器;而按其軸中心線的位置又分為固定軸線式、螺旋軸線(行星齒輪)式和綜合式。其中,固定式變速器應用較廣泛,又可分為兩軸式,三軸式和多軸式變速器。
現(xiàn)代汽車大多都采用三軸式變速器。對發(fā)動機前置前輪驅動的轎車,如變速器傳動比小,則常采用兩軸式變速器。以下是兩軸式和三軸式變速器的傳動方案。要采用哪一種方案,除了汽車總布置的要求外,主要考慮以下四個方面:
2.1.1 結構工藝性
兩軸式變速器輸出軸與主減速器主動齒輪做成一體,當發(fā)動機縱置時,主減速器可用螺旋圓錐齒輪或雙曲面齒輪,而發(fā)動機橫置時用圓柱齒輪,因而簡化了制造工藝。
2.1.2 變速器的徑向尺寸
兩軸式變速器的前進擋均為一對齒輪副,而三軸式變速器則有兩對齒輪副。因此,對于相同的傳動比要求,三軸式變速器的徑向尺寸可以比兩軸式變速器小得多。
2.1.3 變速器齒輪的壽命
兩軸式變速器的低擋齒輪副大小相差懸殊,小齒輪工作循環(huán)次數(shù)比大齒輪要高得多,因此,小齒輪工作壽命比大齒輪要短。三軸式變速器的各前進擋均為常嚙合齒輪傳動,大小齒輪的徑向尺寸相差較小,因此壽命比較接近。在直接擋時,齒輪只是空轉,不影響齒輪壽命。
2.1.4 變速器的傳動效率
兩軸式變速器,雖然可以有等于1的傳動比,但是仍要有一對齒輪傳動,因而有功率損失。而三軸式變速器,可以將輸入軸和輸出軸直接相連,得到直接擋,因而傳動效率高,磨損小,噪聲也較小。
載貨汽車則多采用三軸式變速器。
這次設計的變速器是輕型貨車使用,采用三軸式變速器。
2.2變速器傳動機構的分析
根據(jù)第一節(jié)所述,采用中間軸式變速器,在各擋數(shù)相同的條件下,各變速器的差別主要在常嚙合齒輪對數(shù),換擋方案和倒擋傳動方案。
2.2.1 換擋結構形式的選擇
目前,汽車上的機械式變速器的換擋結構形式有直齒滑動齒輪、嚙合套和同步器換擋三種。
1)滑動齒輪換擋
通常是采用滑動直齒輪換擋,但也有采用滑動斜齒輪換擋的。滑動直齒輪換擋的優(yōu)點是結構簡單、緊湊、容易制造。缺點是換擋時齒端面承受很大的沖擊會導致齒輪過早損壞,并且直齒輪工作噪聲大,所以這種換擋方式一般僅用在一擋和倒擋上。
2)嚙合套換擋
用嚙合套換擋,可以將結構為某傳動比的一對齒輪,制造成常嚙合的斜齒輪。用嚙合套換擋,因同時承受換擋沖擊載荷的接合齒齒數(shù)多,而輪齒又不參與換擋,因此它們都不會過早損壞,但是不能消除換擋沖擊,所以仍要求駕駛員有熟練的操作技術。此外,因增設了嚙合套和常嚙合齒輪,使變速器的軸向尺寸和旋轉部分的總慣量增大。因此,這種換擋方法目前只在某些要求不高的擋位及重型貨車變速器上使用。這是因為重型貨車擋位間的公比較小,要求換擋手感強,而且在這種車型上又不宜使用同步器(壽命太短,維修不便)。
3)同步器換擋
現(xiàn)在大多數(shù)汽車的變速器都采用同步器換擋。使用同步器能保證迅速、無沖擊、無噪聲換擋,與操作技術熟練程度無關,從而提高了汽車的加速性、經(jīng)濟性和行駛安全性。同上述兩種換擋方法相比,雖然它有結構復雜、制造精度要求高、軸向尺寸大、同步環(huán)使用壽命短等缺點,但仍然得到廣泛應用。近年來,由于同步器廣泛使用,壽命問題已得到基本解決。
上述三種換擋方案,可同時用在同一變速器中的不同擋位上,一般倒擋和一擋采用結構較簡單的滑動直齒輪或嚙合套的形式,對于常用的高擋位則采用同步器或嚙合套。
本次設計方案五個前進擋和倒擋均采用同步器換擋。
2.2.2倒擋的形式及布置方案
倒擋使用率不高,常采用直齒滑動齒輪方案換入倒擋。為實現(xiàn)傳動有些利用在前進擋的傳動路線中,加入一個中間傳動齒輪的方案,也有利用兩個聯(lián)體齒輪的方案。
圖2-1倒擋結構方案
常見的倒擋結構方案有以下幾種:
方案1.(如圖2-1a)所示)
在前進擋的傳動路線中,加入一個傳動,使結構簡單,但齒輪處于正負交替對稱變化的彎曲應力狀態(tài)下工作。此方案廣泛用于轎車和輕型貨車的四擋全同步器式變速器中。
方案2.(如圖2-1b)所示)
此方案的優(yōu)點是可以利用中間軸上一擋齒輪,因而縮短了中間軸的長度,但換擋時兩對齒輪必須同時嚙合,致使換擋困難。某些輕型貨車四擋變速器采用此方案。
方案3.(如圖2-1c)所示)
此方案能獲得較大的倒擋傳動比,突出的缺點是換擋程序不合理。
方案4.(如圖2-1d)所示)
此方案針對前者的缺點作了修改,因而經(jīng)常在貨車變速器中使用。
方案5.(如圖2-1e)所示)
此方案中,將中間軸上一擋和倒擋齒輪做成一體其齒體、寬加大,因而縮短了一些長度。
方案6.(如圖2-1f)所示)
此方案中,采用了全部齒輪副均為常嚙合齒輪,換擋方便。
方案7.(如圖2-1g)所示)
為了充分利用空間,縮短變速器軸向長度,有些貨車采用此方案,其缺點是一擋和倒擋得各用一根變速器撥叉軸,使變速器上蓋中的操縱機構復雜一些,一般3、4、5、6、7這五種方案用于五擋變速器。
綜合考慮,本次設計采用一擋和倒擋共用一個同步器換擋。
2.3 變速器操縱機構方案分析
2.3.1變速器操縱機構的功用
變速器操縱機構的功用是保證各擋齒輪、嚙合套或同步器移動規(guī)定的距離,以獲得要求的擋位,而且又不允許同時掛入兩個擋位。
2.3.2 設計變速器操縱機構時,應該滿足的基本要求:
1、要有鎖止裝置,包括自鎖、互鎖和倒擋鎖;
2、要使換擋動作輕便、省力,以減輕駕駛員的疲勞強度;
3、應使駕駛員得到必要的手感。
2.3.3換擋位置
設計操縱機構首先要確定換擋位置。換擋位置的確定主要從換擋方便考慮。為此應該注意以下三點:
1、按換擋次序來排列 ;
2、將常用擋位放在中間位置,其它擋位放在兩邊;
3、為了避免誤掛倒擋,往往將倒擋安排在最靠邊的位置,有時于1擋組成一排。
2.4 齒輪形式的分析確定
斜齒圓柱齒輪雖然工作時有軸向力且加工復雜些,但仍以其運轉平穩(wěn)噪聲低壽命長的突出優(yōu)點得到變速器的普遍采用。本次設計一檔和倒擋采用直齒輪,其它各擋均采用斜齒輪。
2.5 齒輪副安排的分析確定
各齒輪副的相對安排位置,對于整個變速器的結構布置有很大的影響。各擋位置的安排,應考慮以下四個方面的要求:
2.5.1 整車總布置
根據(jù)整車的總布置,對變速器輸入軸與輸出軸的相對位置和變速器的輪廓形狀以及換擋機構提出要求。比如說是該車是采用發(fā)動機前置前驅動還是發(fā)動機前置后驅動等等,這些問題都牽連著變速器的設計方案。
2.5.2 駕駛員的使用習慣
人們習慣于按擋的高低順序,由左到右或由右到左排列來換擋,如下圖b和c。值得注意的是倒擋,雖然它是平常換擋序列之外的一個特殊擋位,然而卻是決定序列組合方案的重要環(huán)節(jié)。例如在四擋變速器中采用的基本序列組合方案有三種,見圖2.2。其中b和c是倒擋與序列不結合的方案,即掛擋時,需先換位再掛倒擋。倒擋與序列結合與不結合兩者比較,前者在結構上可省去一個撥叉和一根變速滑桿,后者如布置適當,則可使變速器的軸向長度縮短。
按習慣,倒擋最好與序列不結合。否則,從安全考慮,將倒擋與一擋放在一起較好。
根據(jù)以上的要求,本次設計的擋位布置方案如圖2.2所示:
圖 2-2 擋位布置方案
2.5.3 提高平均傳動效率
為提高平均傳動效率,在三軸式變速器中,普遍采用具有直接擋的傳動方案,并盡可能地將使用時間最多的擋位實際成直接擋。
2.5.4改善齒輪受載狀況
各擋齒輪在變速器中的位置安排,應考慮齒輪的受載狀況。承受載荷大的低擋齒輪,一般安置在離軸承較近的地方,以減小軸的變形,使齒輪的重疊系數(shù)不致下降過多。變速器齒輪主要是因接觸應力過高而造成表面點蝕損壞,因此將高擋齒輪安排在離兩支承較遠處較好。該處因軸的變形而引起齒輪的偏轉角較小,故齒輪的偏載也小。
本次設計傳動方案如圖2.3所示
傳動路線:
Ⅰ擋:一軸→1→2→中間軸→5→6→6和9間的同步器→二軸→輸出
Ⅱ擋:一軸→1→2→中間軸→10和10間的同步器→12→13→二軸→輸出
Ⅲ擋:一軸→1→2→中間軸→10和12間的同步器→10→10→二軸→輸出
Ⅳ擋:一軸→1→2→中間軸→3→4→1和4間的同步器→二軸→輸出
Ⅴ擋:一軸→1和4間的同步器→二軸→輸出
R擋:一軸→1→2→中間軸→7→8→8’→9→9和11間的同步器→二軸→輸出
圖2-3 傳動方案
(注:第一軸后端為齒輪1,第二軸從左往右依次為齒輪4、6、9、11、13,中間軸從左往右依次為齒輪2、3、5、7、10、12,倒擋軸上位齒輪8,8’)
第3章 變速器的設計與計算
3.1 變速器主要參數(shù)的選擇
3.1.1 擋數(shù)
變速器的擋數(shù)可在3~20個擋位范圍內變化。增加變速器的擋數(shù),能夠改善汽車的動力性和燃油經(jīng)濟性以及平均車速。擋數(shù)越多,變速器的結構越復雜,并且使輪廓尺寸和質量加大,同時操縱機構復雜,而且在使用時換擋頻率增高并增加了換擋難度。
在最低擋傳動比不變的條件下,增加變速器的擋數(shù)會使變速器相鄰的低擋與高擋之間的傳動比比值減小,是換擋工作容易進行。要求相鄰擋位之間的傳動比比值在1.8以下,該值越小換擋工作越容易進行。因高擋使用頻繁,所以又要求高擋區(qū)相鄰擋位之間的傳動比比值,要比抵擋區(qū)相鄰擋位之間的傳動比比值小。
近年來,為了降低油耗,變速器的擋數(shù)有增加的趨勢。目前,乘用車一般用4~5個擋位的變速器。發(fā)動機排量大的乘用車變速器多用5個擋。商用車變速器采用4~5個擋或多擋??傎|量為3.5t以下的貨車采用四擋變速器,總質量在3.5~10.0t的貨車采用五擋變速器,總質量大于10.0t的多采用六擋變速器。特殊用途的車輛可用組合變速器形成更多擋位。所以本次采用的五檔變速器。
3.1.2.各檔傳動比的確定與選擇
汽車在最大爬坡路面上行使時,最大驅動力應能克服輪胎與路面間滾動阻力及上坡阻力。由于汽車上坡行使時,車速不高,故可以忽略空氣阻力,這時:
≥ + (3-1)
式中:——最大驅動力;即 = / Error! No bookmark name given.
——滾動阻力;即 =
——最大上坡阻力。即 =sin
把以上參數(shù)代入(3-1)得:
=+)/
以上是根據(jù)最大爬坡度確定一檔傳動比,式中:
——發(fā)動機最大扭矩,=210.9 N·m;
——變速器一檔傳動比;
——主傳動器傳動比,=6.142;
——汽車總質量,=5661kg;
——道路滾動阻力系數(shù)取0.020;
——傳動系機械效率,取0.90;
——重力加速度;取=9.8;
——驅動輪滾動半徑,取0.393 m;
——汽車最大爬坡度為29%,即=
代入數(shù)據(jù)計算得
≥5.568 取=5.568
變速器的傳動比范圍是指變速器最低擋傳動比與最高擋傳動比的比值。最高擋通常是指直接擋,傳動比為1.0;有的變速器最高擋是超速擋,傳動比為。目前在國產汽車中,乘用車的傳動比變化范圍是,總質量輕些的商用車的約為。兩種變速器傳動比變化范圍相同時,若鄰擋傳動比比值小,則擋數(shù)多;鄰擋傳動比比值大,則擋數(shù)少,結構簡單。但鄰擋傳動比比值若大于1.8,則換擋困難。
已知==5.6,取五擋為超速擋,則:
q 為幾何級數(shù)的公比。
(直接檔)
1.63
2.657
此時:2.11
1.6301
1.63
1.25
符合的要求,可以使用。
3.1.3 中心距A
對于中間軸式變速器,是將中間軸與第二軸之間的距離稱為變速器中心距A。初選中心矩A時,可根據(jù)經(jīng)驗公式計算:
————(《汽車設計》第4版P90)
式中:A——變速器中心距(mm);
——中心距系數(shù),=8.6~9.6,取9.0;
——變速器一擋傳動比;
——變速器傳動效率,取96%;
——發(fā)動機最大扭矩(N·m)。
已知=210.9N·m,=5.6,則93.847mm
為了檢測方便,中心距A最好取為整數(shù),初取A=94mm。
3.2 齒輪參數(shù)
3.2.1 模數(shù)的確定
齒輪模數(shù)是一個重要參數(shù),并且影響它的選取因素很多,如齒輪強度、質量、噪聲、工藝要求等。選取齒輪模數(shù)時一般遵循的原則是:
1.為了減少噪聲應合理減少模數(shù),同時增加齒寬。
2.為使質量小些,應增加模數(shù),同時減小齒寬。
3.從工藝方面考慮,各擋齒輪應選用同一種模數(shù),而從強度方面考慮,各擋齒輪應該有不同的模數(shù)。
4.對貨車,減少質量比減小噪聲更重要,故齒輪應選用大些的模數(shù)。
5.變速器低擋齒輪應選大些的模數(shù),其他擋位選用另一種模數(shù)。
變速器用齒輪的范圍見表3-1
表3-1 汽車變速器齒輪的法向模數(shù)
車型
乘用車的發(fā)動機排量V/L
貨車的最大總重量/t
1.0>V 1.6
1.614.0
模數(shù)/mm
2.25~2.75
2.75~3.00
3.50~4.50
4.50~6.00
所選模數(shù)值應符合國家標準GB/T1357—1987的規(guī)定,見表3-2。選用時,應優(yōu)先選用第一系列,括號內的模數(shù)盡可能不用。
第一系列
1.00
1.25
1.5
—
2.00
—
2.50
—
3.00
—
—
—
4.00
—
5.00
—
6.00
第二系列
—
—
—
1.75
—
2.25
—
2.75
—
3.25
3.5
3.75
—
4.50
—
5.50
—
表3-2 汽車變速器常用的齒輪模數(shù)(摘自GB/T1357—1987)
初選模數(shù)時,可參考同類型汽車的齒輪模數(shù)確定;也可以根據(jù)經(jīng)驗公式確定,即:
高擋齒輪K=1
一擋和倒擋齒輪
式中: 為斜齒輪法向模數(shù);
為一擋和倒擋齒輪模數(shù);
——發(fā)動機最大扭矩;=210.9N·m
——變速器一擋傳動比; =5.600
—— 變速器傳動效率:?。?6%;
根據(jù)上述對經(jīng)驗公式的計算和對表2-1及表2-2的參考,并且貨車變速器更應該注重減小質量,因此,齒輪應該選用大些的模數(shù);變速器低擋齒輪應選用大些的模數(shù)。故本次設計的一擋和倒擋齒輪模數(shù)取m=3.0,其它高擋斜齒輪法向模數(shù)。
3.2.2壓力角α的確定
齒輪壓力角較小時,重合度較大并降低了齒輪剛度,為此能減少進入嚙合和退出嚙合時的動載荷,使傳動平穩(wěn),有利于較低噪聲;壓力角較大時,可提高輪齒的抗彎強度和表面接觸強度。理論上對于乘用車,為提高重合度以降低噪聲,應采用14.5°,15°,16°,16.5°等小些的壓力角;對商用車,為提高齒輪的承載能力,應選用22.5°或25°等大些的壓力角。實際上,因國家規(guī)定的標準壓力角為20°,所以變速器齒輪普遍采用的壓力角為20°。嚙合套或同步器的接合齒壓力角為20°、25°、30°,但普遍采用30°壓力角。
因此,本次設計,變速器齒輪采用壓力角為20°,同步器接合齒壓力角為30°。
3.2.3斜齒輪螺旋角的確定
選取斜齒輪的螺旋角,應注意到它對齒輪工作噪聲,輪齒的強度和軸向力有影響。在齒輪選取大的螺旋角時,齒合重合度增加,工作平穩(wěn),噪聲低。實驗證明:隨著螺旋角的增大,齒的強度也相應提高,不過,當螺旋角大于30°時,抗彎強度急劇下降,而接觸強度仍然繼續(xù)上升。因此,從提高抵擋齒輪的抗彎強度出發(fā),并不希望過大的螺旋角,以15°~25°為宜;而從提高高擋齒輪的接觸強度和增加重合度著眼,應選較大的螺旋角。其中,貨車變速器斜齒螺旋角的選擇范圍為:18°~ 26°。初選斜齒輪螺旋角如下:
, ,,
3.2.4齒寬b的確定
在選擇齒寬的時,應注意到齒寬對變速器的軸向尺寸、質量、齒輪工作平穩(wěn)性、齒輪強度和齒輪工作時受力的均勻程度等均有影響。
考慮到盡可能縮短變速器的軸向尺寸和減少質量,應該選用較小的齒寬。另一方面,齒寬減少使斜齒輪傳動平穩(wěn)的優(yōu)點被削弱,此時雖然可以用增加螺旋角的方法給予補償,但這時軸承承受的軸向力增大,使其壽命降低。齒寬窄又會使齒輪的工作應力增加。選用寬些的齒輪,工作時會因軸的變形導致齒輪傾斜,使齒輪沿齒寬方向受力不均勻造成偏載,導致承載能力降低,并在齒寬方向磨損不均勻。齒寬可根據(jù)齒輪模數(shù)()
初選:
直齒: =,為齒寬系數(shù),取4.5~8.0
斜齒: =,取為6.0~8.5;
1)直齒
=(4.5~8.0)×3.0=13.5~24 (mm)
=27mm, =22mm, =22mm, =27mm,=27mm,=22mm ,
2)斜齒
b=(6.0~8.5)×3.0=18~25.5(mm)
=27mm, =22mm, =20mm, =25mm , = 20mm, =25mm, =25mm.
b13=20mm
其中上述各表達式中b的下標1、2、3、4、5、6、7、8、9、10、11、12、13代表圖2-4中的各個齒輪,如表示齒輪1的齒寬。
3.2.5各檔齒輪齒數(shù)的確定
1)Ⅰ檔齒輪的齒數(shù)確定()
①斜齒
=2A/m=2×94/3.0=62.67,圓整取63
由=Z5 + Z6進行大小齒輪齒數(shù)分配,為使b11/b12的傳動比更大些,
取Z5=17;Z6=46
②對中心距A進行修正
A=(×m)/2=(17+46 )×3.0/2=94.5mm
取A=95mm
③確定常嚙合傳動齒輪副的齒數(shù)
6.50×17/46=2.07
由A=(+)×/(2×cos20°)=95mm,
+=2×A×cos20°/=2×95×cos20°/3.0=59.514
根據(jù)上述兩式可求出 =19.386 =40.128
圓整后取 =19 =41
3-1 I擋嚙合傳動齒輪副
④修正
= (×Z6)/(×Z5) = 41×46/(19×17) = 5.839
=(5.839-5.6)/5.6×100%=4.27<5(合格)
⑤修正螺旋角β1,2
由=×(+)/(2×cos) 得
=[×(+)/(2×A)]
= [3.0×(19+41)/(2×95)]=18.67°
2)Ⅱ檔齒輪的齒數(shù)確定( β12,13=20°)
二檔齒輪是斜齒輪,螺旋角 β12, 13與常嚙合齒輪的不同,因此有:
Z12/Z13=×/=2.657×19/41 =1.231
而 A=×(Z12+Z13)/(2×β12, 13)可得
Z12+Z13 =(2×β12, 13×A)/ =(2×cos20°×95)/3.0=59.514
求得 Z12=26.676 Z13=32.838
圓整后取得 Z12=27 Z13=34
①修正
=(× Z12 )/(×Z13)=2.217
%=1.845<5(合格)
②修正β12, 13
β12, 13 =[× ( Z12 +Z13)/(2×A)
=[3.0×(27+34)/(2×95)]=15.6°
從抵消或減少中間軸的軸向力出發(fā),齒數(shù)還必須滿足下列關系式:
/ =/(+)×(1+Z12/Z13)=1.544
固有, / =1.21
|1.544-1.21|=0.323<0.5
兩者相差不大,近似認為軸向力平衡。
3)Ⅲ檔齒輪的齒數(shù)確定( β10,11 =20°)
Z10/Z11=×/=0.7554
而 A=×(Z10+Z11)/(2×β10,11)可得
Z5 +Z6 =(2×β10,11 ×A)/
=(2×cos20°×95)/3.0= 59.514
解上述兩個方程式可求出 Z10=33.903 Z11 =25.611
圓整后取 Z10=34 Z11 =25
①修正
=× Z10 /×Z11=1.587
=2.638%< 5(合格)
②修正β10,11
β10,11=[× ( Z10 + Z11 )/(2×A)]
= [3.0×(34+25)/(2×95)]=21.32°
從抵消或減少中間軸的軸向力出發(fā),齒數(shù)還必須滿足下列關系式:
/β10,11 =/(+)×(1+ Z11 / Z10 )
/β10,11 =0.866
/(+)×(1+ Z7 / Z8 )= 1.186
|1.186-1|=0.32<0.5
兩者相差不大,近似認為軸向力平衡。
4)Ⅳ檔齒輪的齒數(shù)確定( β3,4 =20°)
Z4/ Z3=i5×/=0.317
而 A=×( Z3+Z4)/(2×β3,4)可得
Z3+=(2××A)/=(2×cos20°×95)/3.0=59.514
解上述兩個方程式可求出 Z3= 43.409 Z4=16.105
圓整后取 Z3=44 Z4=17
①修正i5
i5=× Z4/Z3=0.834
i5% =4.25%< 5(合格)
②修正β3,4
β3,4=[× ( Z3 + Z4 )/(2×A)]
=[3.0×(44+17)/(2×95)]=15.6°
從抵消或減少中間軸的軸向力出發(fā),齒數(shù)還必須滿足下列關系式:
/ =/(+)×(1+ Z4/Z3 )
/ =0.947
/(+)×(1+Z3 /Z4 )=44/(17+44)×(1+23/38)=1.21
|1.21-0.947|=0.273<0.5
5)倒擋齒輪齒數(shù)的確定
一般倒擋傳動比和一擋的傳動比相近,故初選倒擋傳動比 =5.1,而中間軸上倒擋齒輪Z7一般比齒輪Z5略小,則取Z7=17。倒擋齒輪Z8一般在21~23之間選擇,初選=22,(注,齒輪8和齒輪8’是做成一體的兩個相同的齒輪)
,故 =44.90488,圓整=44
可計算出中間軸與倒擋軸的中間距A′
54mm
倒擋軸與第二軸的中心距A″
91.5mm
校核倒擋傳動比4.997
修正后各擋的傳動比為:
=5.839, =2.717, =1.587, =1.000 =0.834,=4.997
3.2.6齒輪精度的選擇
根據(jù)推薦,提高高擋位齒輪的性能,取為6級,為7級。
3.2.7 螺旋方向
由于斜齒輪傳遞扭矩時要產生軸向力,設計時應力求使中間軸上同時工作的兩對齒輪產生的軸向力平衡,以減小軸承負荷,提高軸承壽命。因此,中間軸上全部齒輪的螺旋方向應一律取為右旋,第一、第二軸上的斜齒輪應取為左旋。軸向力經(jīng)軸承蓋作用到殼體上。一擋和倒擋設計為直齒時,在這些擋位上工作,中間軸上的軸向力不能抵消(但因為這些擋位使用得少,所以也是允許的),而此時第二軸沒有軸向力作用。
3.2.8齒輪變位系數(shù)的選擇和計算
采用變位系數(shù),除了避免齒輪產生干涉、根切和配合中心距以外,還因為變速器不同擋位的齒輪在彎曲強度、接觸強度、使用平穩(wěn)性、耐磨性及抗膠合能力等方面有不同的要求,采用齒輪變位就能分別予以兼故。齒輪變位是提高齒輪壽命的有效方法。
對實際中心距等于已知中心距時,采用高度變位,反之采用角度變位。由于角度變位可獲得良好的齒合性能及傳動質量,故較多被采用.
變速器齒輪是斷續(xù)工作的,各擋使用條件不同,齒輪經(jīng)常承受循環(huán)負荷,有時還承受沖擊負荷。使用表明,變速器齒輪大多是因為齒面剝落和疲勞斷裂而損壞的,因此,變位系數(shù)應按提高接觸強度、彎曲強度和抗膠合及耐磨損最有利的原則選擇變位系數(shù)。對于常用的高擋齒輪,其主要損壞形式是齒面疲勞剝落,應按保證最大接觸強度和抗膠合及耐磨損最有利的原則選擇變位系數(shù)。為提高接觸強度,應使所選用的變位系數(shù)盡可能取大些,這樣兩齒輪的齒廓漸開線離基圓較遠,以增大齒廓曲率半徑,減小接觸應力。對于低擋齒輪,由于齒輪的齒根強度較低,加之傳遞的載荷較大,有時會出現(xiàn)小齒輪的彎曲強度,應根據(jù)危險斷面齒厚相等的條件來選擇大、小齒輪的變位系數(shù),此時小齒輪的變位系數(shù)大于零。為提高耐磨性及抗膠合能力,應使所選用的變位系數(shù)能降低兩齒合齒輪的相對滑動系數(shù),并使兩齒輪齒根外的滑動系數(shù)趨于平齊。利用變位系數(shù)封閉圖分配變位系數(shù)是目前較好的一種方法,它比較全面地綜合了各種限制條件和各種傳動質量指標。使用該圖分配變位系數(shù)可不必校核是否干涉,根切,齒頂變尖以及重合系數(shù)過低等情況。
3.2.9變位系數(shù)的計算:
通過軟件六藝方圓計算出個嚙合齒輪副分配系數(shù)。
分配變位系數(shù):
X1 =0.25 X2 =-0.25 X3 =0.325 X4 =-0.325 X5 =0.358
X6 =-0.188 X7 =-0.06 X8 =-0.06 X9 =-0.25 X10 =-0.125
X11 =0.125 X12 =0.125 X13 = -0.125
3.2.10 計算所得齒輪參數(shù)
各個參數(shù)具體數(shù)值如表3-4所示(表中齒形系數(shù)y是通過查齒形系數(shù)圖得出的,即查汽車設計第4版P97圖3-19):
3-3 通過軟件六藝方圓計算出各嚙合齒輪副分配變位系數(shù)
注:直齒圓柱齒輪: 斜齒圓柱齒輪:
齒頂高=(+-); 端面模數(shù)=/;
齒根高=(+ -); 分度圓直徑=;
齒頂高系數(shù)=1.0; (其它可根據(jù)直齒齒輪的公式來計算)
頂隙系數(shù)=0.25;齒頂圓直徑=+2;齒根圓直徑=-2;
分度圓直徑=;齒高=+
3.3 變速器齒輪的校核
3.3.1 齒輪的損壞形式
變速器齒輪的損壞形式主要有:輪齒折斷、齒面疲勞剝落(點蝕)、移動換擋齒輪端部破壞以及齒面膠合。
3.3.2輪齒強度計算
1)輪齒彎曲強度計算
①直齒輪彎曲應力
(3-2)
式中,為彎曲應力(MPa);為圓周力(N),;為計算載荷(N·mm);為節(jié)圓直徑(mm);為應力集中系數(shù),可近似取=1.50;為摩擦力影響系數(shù),主、從動齒輪在嚙合點上的摩擦力方向不同,對彎曲應力的影響也不同:主動齒輪=1.1,從動齒輪=0.9;為齒寬(mm);為端面齒距(mm),,為模數(shù);為齒形系數(shù)(由表3-4得出)。
又 ,為齒數(shù),故
(3-3)
當計算載荷取作用到變速器第一軸上的最大轉矩時,一、倒擋直齒輪
用應力請按要求?。?00~850MPa。
計算得各直齒彎曲應力為:
= 424.615 =134.464 =460.057Mpa =417.433Mpa =226.949Mpa =166.442Mpa
②斜齒輪彎曲應力
(3-4)
式中,為圓周力(N),;為計算載荷(N·mm);為節(jié)圓直徑(mm),
,為法向模數(shù)(mm);為齒數(shù);為斜齒輪螺旋角(°);為應力集中系數(shù),可近似取=1.50;為齒寬(mm);為法向齒距(mm),;為齒形系數(shù)(由表3-4得出); 為重合度影響系數(shù),=2.0。
將以上有關參數(shù)代入(3-4),得
(3-5)
當計算載荷取作用到變速器第一軸上的最大轉矩時,對貨車,許用應力為100~250MPa。
計算得各斜齒彎曲應力為:
=166.832MPa, =81.045MPa, =88.739MPa, =200.604MPa,
=107.942MPa,=137.143MPa, =133.042MPa, =100.941MPa。
③輪齒接觸應力
(3-6)
式中,為輪齒的接觸應力();為池面上的法向力(N),;
為圓周力(N),;為計算載荷(N·mm);為節(jié)圓直徑(mm);為節(jié)點處壓力角(°),為齒輪螺旋角(°);為齒輪材料的彈性模量(MPa);為齒輪接觸的實際寬度(mm);、為主、從動齒輪節(jié)點處的曲率半徑(mm),直齒輪、
,斜齒輪、;、為主、從動齒輪節(jié)圓半徑(mm)。
將上述有關參數(shù)代入(3-6),得
直齒輪: (3-7)
斜齒輪: (3-8)
將作用在變速器第一軸上的載荷(為發(fā)動機最大扭矩)作為計算載荷時,變速器齒輪的許用接觸應力見表3-4。
表3-4 變速器齒輪的許用接觸應力
齒輪
滲碳齒輪
液體碳氮共滲齒輪
一擋和倒擋
1900~2000
950~1000
常嚙合齒輪和高擋
1300~1400
650~700
——(《汽車設計》第4版P98)
變速器齒輪多數(shù)采用滲碳合金鋼,其表層的高硬度與心部的高韌性相結合,能大大提高齒輪的耐磨性及抗彎曲疲勞和接觸疲勞的能力。國內汽車變速器齒輪材料主要采用20CrMnTi、、15MnCr5、20MnCr5、25MCr5、28MnCr5。滲碳齒輪表面硬度為58~63HRC,心部硬度為33~48HRC。本次設計所用齒輪材料為20CrMnTi,其彈性模量。
計算得各齒輪的接觸應力為:
直齒輪:=1065.177MPa =647.541MPa =1114.686MPa =1178.433MPa =1135.577Mpa,=705.854
斜齒輪:=935.785MPa =637.032MPa =674.696MPa =1085.45MPa =684.882MPa =798.703MPa =777.468MPa =692.827MPa
(注:齒輪的接觸強度和彎曲強度的計算程序及結果見附錄)
3.4變速器軸的設計計算
3.4.1軸的功用及設計要求
變速器在工作時,由于齒輪上有圓周力、徑向力和軸向力作用,變速器的軸要承受轉矩和彎矩。要求變速器的軸應有足夠的的剛度和強度。軸的剛度不足,在負荷作用下,軸會產生過大的變形,影響齒輪的正常嚙合,產生過大的噪聲,并會降低齒輪的使用壽命。
設計變速器軸時主要考慮以下問題:軸的結構形狀,軸的直徑、長度、軸的剛度和強度、軸上花鍵形式和尺寸等。
軸的結構主要依據(jù)變速器結構布置的要求,并考慮加工工藝,裝配工藝而最后確定。
3.4.2初選軸的直徑
在已知中間軸式變速器中心距A時,第二軸和中間軸中部直徑d=(0.4-0.5)A,軸的最大直徑d和支承間距離L的比值:對第一軸和中間軸,d/L=0.16-0.18;對第二軸,d/L=0.18-0.21。已知A=95mm,則第二軸和中間軸中部直徑
d=(0.4-0.5)×95mm=38-47.5mm
第一軸花鍵部分直徑d(mm)可按下式初選
式中,K為經(jīng)驗系數(shù),K=4.0-4.6,取K=4.3;為發(fā)動機最大扭矩(N·m),
=210.9 N·m,故第一軸花鍵部分直徑 d=25.595mm,取d=26mm。
與中間軸齒輪常嚙合的第二軸齒輪,常裝在青銅襯套或滾針軸承上,也有的直接裝在軸上,這就能夠增大軸的直徑因而增加軸的剛度。
軸的尺寸還與齒輪、花鍵、軸承有一定聯(lián)系,要根據(jù)具體情況,按其標準進
修正。
第二軸各軸段最小軸徑:= (是由軸的材料和承載情況確定的常數(shù),取=100) ,因為 T=9.55××,而 ,可得=/9.55×
其中: P——軸傳遞的功率();
——軸的轉速,;
T——軸所受的扭矩;
——發(fā)動機最大扭矩;
——各擋傳動比;
——傳動效率,取=96%。
故第二軸各軸段最小軸徑為:
齒輪4處:26.05mm
齒輪6處: 49.84mm
齒輪9處: 32.28mm
齒輪11處: 38.28mm
齒輪13處: 38.62mm
齒輪1處:28.06mm
當軸截面上開著鍵槽時,應增大軸徑以考慮對軸的強度減弱,同步器花鍵增加5%,中間軸有兩鍵槽且直徑小于100mm,增加10% 。
∴修正后取整得,軸徑如下:
二軸:
齒輪4處:28mm
齒輪6處: 53mm
齒輪9處: 50mm
齒輪11處: 34 mm
齒輪13處: 41mm
齒輪1處:30mm
Ⅳ與Ⅴ擋同步器軸徑:d小徑=28mm
Ⅱ與Ⅲ擋同步器軸徑:d小徑=42mm
I擋與R擋同步器軸徑:d小徑=52mm
中間軸:齒輪2、4處:36.25mm
修正后取整得:d=36.25×(1+10%)=40mm
注:齒輪5、7做在軸上;其它尺寸按標準構件來定。
3.4.3 軸的結構形式
軸的結構形式應保證齒輪、同步器及軸承等的安裝、固定,并且與工藝要求有密切關系。
在中間軸式變速器中,第一軸通常和齒輪做成一體,前端支承在發(fā)動機飛輪內腔的軸承上。其軸徑根據(jù)前軸內徑確定。第一花鍵尺寸與離合器從動盤轂內花鍵統(tǒng)一考慮。第一軸的長度根據(jù)離合器總成尺寸確定,確立了第一軸后軸徑時,希望軸承外徑比第一軸上常嚙合齒圈外徑大,以便于裝拆第一軸。
第二軸軸頸通過軸承安裝在第一軸常嚙合齒圈的內腔里,它受齒輪徑向尺寸的限制,前軸頸上安裝長或短圓柱滾子軸承或滾針軸承。第二軸各擋齒輪與軸之間有相對旋轉運動,因此,無論裝滾針軸承,襯套(滑動軸承)還是鋼件對鋼件直接接觸,軸的表面粗糙度均要求很高,不低于Ra0.8,表面硬度不低于HRC58~63。在一般情況下軸上應開螺旋油槽,以保證充分潤滑。第二軸制成階梯式,便于齒輪安裝 ,從受力和合理使用材料看,這也是需要的。各截面尺寸要避免相差懸殊,否則易造成軸折斷。
變速器中間軸有旋轉式和固定式兩種,固定式中間軸是根光軸,僅起支承作用。其剛度由安裝在軸上的寶塔齒輪結構保證。軸和寶塔齒輪之間用滾針軸承或長、或短圓柱滾子軸承,軸常輕壓于殼體中。因此光軸有二種配合公差的軸徑。固定式中間軸用鎖片或雙頭螺栓固定。輕型汽車變速器中心距較小,殼體上無足夠位置設置滾動軸承和軸承蓋,因而多采用固定式中間軸。
旋轉式中間軸支承在前后兩個滾動軸承上,一般軸向力常由后軸承承受。由于中間軸上一擋、二擋、倒擋齒輪尺寸較小,常與軸做成一體,成為中間齒輪軸,而高擋齒輪則通過鍵或過盈配合與中間齒輪軸結合以便齒輪損壞后更換。如結構尺寸允許應盡量用旋轉式而不用固定式中間軸。設計變速器軸時,力求減小軸向尺寸。
本次設計為輕型貨車變速器,故采用旋轉式中間軸。
3.4.4 軸的受力分析
計算軸的強度、剛度及選擇軸承都要首先分析軸的受力和各支承反力。這些力取決于齒輪輪齒上的作用力。
不同擋位時,軸所受的力及支承反力是不同的,須分別計算。齒輪上的作用力認為作用在有效齒面寬中點。軸承上支承反力作用點,對于向心球軸承取寬度方向中點;對向心推力軸承,取滾動體負荷向量與軸中心線匯交點;對于圓錐滾子軸承,取滾動體寬中點處滾動體中心線的法線與軸中心線的匯交點,其尺寸可查有關軸承的標準手冊。
求支承反力,先從第二軸開始,然后依次計算中間軸、第一軸。軸的受力分析,根據(jù)軸的受力情況,可畫出軸的彎矩圖和轉矩圖,再確定軸的危險截面,從而可對軸進行強度和剛度校核。
1)齒輪的受力分析:(如圖3-2)
圓周力: =2/
徑向力: =tan/
軸向力: =tan
其中:M——計算轉矩
——法向壓力角
——螺旋角
圖3-2齒輪的受力分析
2)各力的方向
:主動輪與旋轉方向相反,從動輪與旋轉方向相同。
:分別指向各齒輪中心
:受力方向通常用“主動輪左、右手法則”來判定,左旋齒輪用左手,右旋齒輪用右手,拇指指向軸向力的方向,從動輪與主動輪方向相反。
3)各力的作用點
齒輪上的作用力認為作用有效齒面寬中心。軸承支承反力作用點,對于向心軸承取寬度方向中點:對于向心推力軸承取滾動體負荷響亮與軸中心線匯交點;對于圓錐滾子軸承取滾動體寬中心點滾動中心線的匯交點,其尺寸可查有關軸承的標準手冊。
4)軸的強度校核
由變速器結構布置并考慮到加工和裝配而確定的軸的尺寸,一般來說強度是足夠的,僅對其危險斷面進行驗算。按下表3-5中的公式求出不同擋位時的各支承反
收藏
編號:98013889
類型:共享資源
大小:54.37MB
格式:ZIP
上傳時間:2022-05-28
50
積分
- 關 鍵 詞:
-
三維UG模型
含cad圖紙+文檔全套資料
輕型
貨車
變速器
設計
三軸式四檔
三維
UG
模型
cad
圖紙
文檔
全套
資料
- 資源描述:
-
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。