福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時訓(xùn)練24 相似三角形的應(yīng)用練習(xí)

上傳人:Sc****h 文檔編號:89520689 上傳時間:2022-05-13 格式:DOCX 頁數(shù):9 大?。?82.58KB
收藏 版權(quán)申訴 舉報 下載
福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時訓(xùn)練24 相似三角形的應(yīng)用練習(xí)_第1頁
第1頁 / 共9頁
福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時訓(xùn)練24 相似三角形的應(yīng)用練習(xí)_第2頁
第2頁 / 共9頁
福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時訓(xùn)練24 相似三角形的應(yīng)用練習(xí)_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時訓(xùn)練24 相似三角形的應(yīng)用練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時訓(xùn)練24 相似三角形的應(yīng)用練習(xí)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、課時訓(xùn)練24 相似三角形的應(yīng)用 限時:30分鐘 夯實(shí)基礎(chǔ) 1.兩個相似多邊形的面積比是9∶16,其中較小多邊形的周長為36 cm,則較大多邊形的周長為(  ) A.48 cm B.54 cm C.56 cm D.64 cm 2.[2018·濱州]在平面直角坐標(biāo)系中,線段AB兩個端點(diǎn)的坐標(biāo)分別為A(6,8),B(10,2).若以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮短為原來的12后得到線段CD,則點(diǎn)A的對應(yīng)點(diǎn)C的坐標(biāo)為(  ) A.(5,1) B.(4,3)

2、 C.(3,4) D.(1,5) 3.如圖K24-1,兩個等邊三角形,兩個矩形,兩個正方形,兩個菱形各成一組,每組中的一個圖形在另一個圖形的內(nèi)部,對應(yīng)邊平行,且對應(yīng)邊之間的距離都相等,那么兩個圖形不相似的一組是(  ) 圖K24-1 4.如圖K24-2,一張矩形紙片ABCD的長AB=a,寬BC=b.將紙片對折,折痕為EF,所得矩形AFED與矩形ABCD相似,則a∶b=(  ) 圖K24-2 A.2∶1 B.2∶1 C.3∶3 D.3

3、∶2 5.[2017·煙臺]如圖K24-3,在直角坐標(biāo)系中,每個小方格的邊長均為1.△AOB與△A'OB'是以原點(diǎn)O為位似中心的位似圖形,且相似比為3∶2,點(diǎn)A,B都在格點(diǎn)上,則點(diǎn)B'的坐標(biāo)是   ?。? 圖K24-3 6.如圖K24-4,已知零件的外徑為30 mm,現(xiàn)用一個交叉卡鉗(兩條尺長AC和BD相等,OC=OD)測量零件的內(nèi)孔直徑AB.若OC∶OA=1∶2,且量得CD=12 mm,則零件的厚度x=    mm.? 圖K24-4 7.如圖K24-5,在5×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,四邊形ABCD的每個頂點(diǎn)都在格點(diǎn)上,延長DC與過點(diǎn)B的水平網(wǎng)格線交于點(diǎn)E

4、,則線段CE的長為    .? 圖K24-5 8.[2017·涼山州]如圖K24-6,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)? 圖K24-6 能力提升 9.[2017·蘭州]如圖K24-7,小明為了測量一涼亭的高度AB(頂端A到水平地面BD的距離),在涼亭的旁邊放置一個與涼亭臺階BC等高的臺階DE(DE=BC=0.5米,A,B,C三點(diǎn)共線

5、),把一面鏡子水平放置在臺階上的點(diǎn)G處,測得CG=15米,然后沿直線CG后退到點(diǎn)E處,這時恰好在鏡子里看到?jīng)鐾さ捻敹薃,測得EG=3米,小明身高EF=1.6米,則涼亭的高度AB約為(  ) 圖K24-7 A.8.5米 B.9米 C.8米 D.10米 10.[2018·揚(yáng)州]如圖K24-8,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰直角三角形ABC和等腰直角三角形ADE,CD與BE,AE分別交于點(diǎn)P,M.對于下列結(jié)論:①△BAE∽△CAD;②MP·MD=MA·ME;③2CB2=CP·CM.其中正確的是(  )

6、 圖K24-8 A.①②③   B.① C.①② D.②③ 11.一塊材料的形狀是銳角三角形ABC,邊BC=120 mm,高AD=80 mm,把它加工成正方形零件如圖K24-9①,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在AB,AC上. (1)求證:△AEF∽△ABC; (2)求這個正方形零件的邊長; (3)如果把它加工成矩形零件,如圖②,問這個矩形的最大面積是多少? 圖K24-9 拓展練習(xí) 12.如圖K24-10①,將正方形紙片ABCD對折,使AB與CD重合,折

7、痕為EF.如圖②,展開后再折疊一次,使點(diǎn)C與點(diǎn)E重合,折痕為GH,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)M,EM交AB于N.若AD=2,則MN=    .? 圖K24-10 13.[2018·眉山]如圖K24-11①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN. (1)求證:BN平分∠ABE; (2)若BD=1,連接DN,當(dāng)四邊形DNBC為平行四邊形時,求線段BC的長; (3)如圖②,若點(diǎn)F為AB的中點(diǎn),連接FN,F(xiàn)M,求證:△MFN∽△BDC. 圖K24-11 參考答案 1.A 2.C 

8、[解析] 根據(jù)題意得點(diǎn)C的坐標(biāo)為6×12,8×12,即C(3,4). 3.B  4.B 5.-2,43 [解析] 由題意,將點(diǎn)B的橫、縱坐標(biāo)都乘-23得點(diǎn)B'的坐標(biāo).∵B的坐標(biāo)為(3,-2),∴B'的坐標(biāo)為-2,43. 6.3  7.52 8.解:如圖,延長OC,AB交于點(diǎn)P. ∵∠ABC=120°,∴∠PBC=60°. ∵∠OCB=∠A=90°,∴∠P=30°. ∵AD=20,∴OA=12AD=10. ∵BC=2,∴在Rt△CPB中,PC=BC·tan60°=23,PB=2BC=4. ∵∠P=∠P,∠PCB=∠A,∴△PCB∽△PAO,∴PCPA=BCOA, ∴P

9、A=PC·OABC=23×102=103,∴AB=PA-PB=103-4. 答:路燈的燈柱AB高應(yīng)該設(shè)計為(103-4)米. 9.A [解析] 由光線反射可知∠FGE=∠AGC, 又∵∠FEG=∠ACG=90°,∴△FEG∽△ACG,∴FE∶AC=EG∶CG, ∴1.6∶AC=3∶15,∴AC=8, ∴AB=AC+BC=8.5. 10.A [解析] 由題意可知AC=2AB,AD=2AE,∴ACAB=ADAE,∵∠BAC=∠EAD,∴∠BAE=∠CAD,∴△BAE∽△CAD,所以①正確; ∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴MP

10、MA=MEMD,∴MP·MD=MA·ME,所以②正確; ∵∠BEA=∠CDA,∴P,E,D,A四點(diǎn)共圓,∴∠APD=∠AED=90°, ∵∠CAE=180°-∠BAC-∠EAD=90°,∴△CAP∽△CMA,∴AC2=CP·CM,∵AC=2AB=2CB, ∴2CB2=CP·CM,所以③正確. 故選A. 11.解:(1)證明:∵四邊形EGHF為正方形, ∴BC∥EF,∴△AEF∽△ABC. (2)設(shè)正方形零件的邊長為a, 在正方形EFHG中,EF∥BC. ∵AD⊥BC,∴AK⊥EF. ∵△AEF∽△ABC, ∴a120=80-a80,解得a=48, ∴正方形零件的邊長為4

11、8 mm. (3)設(shè)EG=x,矩形EGHF的面積為y, ∵△AEF∽△ABC, ∴EF120=80-x80,∴EF=32(80-x), ∴y=32(80-x)·x=-32(x-40)2+2400, ∴當(dāng)x=40時,y最大,且最大值為2400, ∴矩形EGHF的最大面積為2400 mm2. 12.13 [解析] 由折疊可知:DE=1,HC=EH,EM=BC, 設(shè)EH=HC=x,則DH=2-x,在Rt△DEH中, ∵EH2=DE2+DH2,∴x2=12+(2-x)2,解得x=54,DH=2-54=34,∵∠A=∠NEH=∠D=90°, ∴∠AEN+∠DEH=∠DEH+∠EHD=

12、90°, ∴∠AEN=∠EHD,∴△NEA∽△EHD, ∴ENAE=EHDH,∴EN1=5434,∴EN=53, ∴MN=EM-EN=BC-EN=2-53=13,故填13. 13.[解析] (1)利用等腰三角形的三線合一性質(zhì)可以得到∠CAM=∠BAM,AM⊥BC,由MN=MB可得∠MNB= ∠MBN,再根據(jù)角的和差關(guān)系及外角性質(zhì)即可證得. (2)利用(1)中的結(jié)論可證得AN=DN,再依據(jù)平行四邊形性質(zhì),等量代換可得BC=AN,在Rt△AMB中用勾股定理可求得BM的長,即可求得BC的長. (3)根據(jù)中位線的性質(zhì)及線段的比例關(guān)系可以證得FMBD=NMBC,再依據(jù)中位線的平行關(guān)系和已知

13、垂直關(guān)系,證明∠NMF=∠CBD,從而證明△MFN∽△BDC. 解:(1)證明:∵AB=AC,M為BC中點(diǎn),∴AM⊥BC,∠CAM=∠BAM, 又∵AC⊥BD,∴∠CAM=∠CBE. 即∠MAB=∠CBE. ∵M(jìn)B=MN,∴∠MNB=∠MBN, ∵∠MNB=∠MAB+∠NBA,∠MBN=∠CBD+∠DBN, ∴∠DBN=∠NBA,即BN平分∠ABE. (2)在△ABN與△DBN中,AB=DB,∠ABN=∠DBN,BN=BN, ∴△ABN≌△DBN,∴DN=AN.∵四邊形DNBC為平行四邊形,∴BC=DN,∴AN=BC.在Rt△AMB中,設(shè)BM=x,則MN=x,AN=2x, 則x2+(3x)2=12,解得:x=1010(負(fù)值舍去), ∴BC=105. (3)證明:∵點(diǎn)F,M分別是AB,BC的中點(diǎn), ∴FM∥AC,F(xiàn)M=12AC. ∵AC=BD,∴FM=12BD, 即FMBD=12.∵△BMN是等腰直角三角形, ∴NM=BM=12BC,即NMBC=12, ∴FMBD=NMBC.∵AM⊥BC,∴∠NMF+∠FMB=90°. ∵FM∥AC,∴∠ACB=∠FMB. ∵∠CEB=90°,∴∠ACB+∠CBD=90°. ∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD. ∴△MFN∽△BDC. 9

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!