《(河北專版)2018年秋八年級數(shù)學(xué)上冊 第十二章 全等三角形檢測題 (新版)新人教版》由會員分享,可在線閱讀,更多相關(guān)《(河北專版)2018年秋八年級數(shù)學(xué)上冊 第十二章 全等三角形檢測題 (新版)新人教版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第十二章檢測題(時(shí)間:100分鐘滿分:120分)一、選擇題(每小題3分,共30分)1已知ABC的三個內(nèi)角三條邊長如圖所示,則甲、乙、丙三個三角形中,和ABC全等的圖形是( B )A甲和乙 B乙和丙 C只有乙 D只有丙2如圖,ABDCDB,下面四個結(jié)論中,不正確的是( C )AABD和CDB的面積相等 BABD和CDB的周長相等CAABDCCBD DADBC,且ADBC,(第2題圖),(第3題圖),(第4題圖),(第5題圖)3如圖,要測量湖兩岸相對兩點(diǎn)A,B的距離,可以在AB的垂線BF上取兩點(diǎn)C,D,使CDBC,再作出BF的垂線DE,使點(diǎn)A,C,E在一條直線上,這時(shí)可得ABCEDC,用于判定全等
2、的是( C )ASSS BSAS CASA DAAS4如圖,BEAC于點(diǎn)D,且ADCD,BDED,ABC54,則E( B )A25 B27 C30 D455小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線如圖,一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是BOA的平分線”他這樣做的依據(jù)是( A )A角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上B角平分線上的點(diǎn)到這個角兩邊的距離相等C三角形三條角平分線的交點(diǎn)到三條邊的距離相等D以上均不正確6如圖,ABDE,ACDF,ACDF,下列條件中不能判斷ABCD
3、EF的是( C )AABDE BBE CEFBC DEFBC,(第6題圖),(第7題圖),(第8題圖),(第9題圖)7如圖,已知ABDC,ADBC,E,F(xiàn)是DB上兩點(diǎn)且BFDE,若AEB100,ADB30,則BCF( D )A150 B40 C80 D708如圖,ABBC,BEAC,12,ADAB,則( D )A1EFD BBEECCBFDFCD DFDBC9如圖,在ABC中,ABAC,點(diǎn)E,F(xiàn)是中線AD上的兩點(diǎn),則圖中可證明為全等三角形的有( D )A3對 B4對 C5對 D6對10如圖,在ABC中,ABAC,AD是角平分線,BECF,則下列說法正確的個數(shù)是( D )AD平分EDF;EBDF
4、CD;BDCD;ADBC.A1 B2 C3 D4,(第10題圖),(第11題圖),(第12題圖),(第13題圖)二、填空題(每小題3分,共24分)11如圖,ABCDEF,且ABC的周長為11,若AB3,EF5,則AC312如圖,已知點(diǎn)A,B,D,E在同一直線上,ADEB,BCDF,要使ABCEDF,則要添加的一個條件是AE(答案不唯一)(只需填寫一個即可)13如圖,已知ABEACF,EF90,CMD70,則220 度14如圖,ABAC,ADAE,BACDAE,125,230,則355,(第14題圖),(第15題圖),(第16題圖),(第17題圖)15如圖,ABC的周長為32,且ABAC,ADB
5、C于點(diǎn)D,ACD的周長為24,那么AD的長為816如圖,旗桿AC與旗桿BD相距12 m,某人從點(diǎn)B沿BA走向點(diǎn)A,一段時(shí)間后他到達(dá)點(diǎn)M,此時(shí)他仰望旗桿的頂點(diǎn)C和D,兩次視線的夾角為90,且CMDM.已知旗桿AC的高為3 m,該人的運(yùn)動速度為1 m/s,則這個人運(yùn)動到點(diǎn)M所用時(shí)間是3s.17如圖,O是直線BC上的點(diǎn),OM平分AOB,ON平分AOC,點(diǎn)E在OM上,過點(diǎn)E作EGOA于點(diǎn)G,EPOB于點(diǎn)P,延長EG,交ON于點(diǎn)F,過點(diǎn)F作FQOC于點(diǎn)Q,若EF10,則FQEP的長度為1018如圖,ACAE,ADAB,ACBDAB90,BAE35,AECB,AC,DE交于點(diǎn)F.(1)DAC35度;(2)
6、猜想線段AF與BC的數(shù)量關(guān)系是BC2AF三、解答題(共66分)19(8分)如圖,點(diǎn)D為碼頭,A,B兩個燈塔與碼頭的距離相等,DA,DB為海岸線一輪船離開碼頭,計(jì)劃沿ADB的平分線航行,在航行途中C點(diǎn)處測得輪船與燈塔A和燈塔B的距離相等試問:輪船航行是否偏離指定航線?請說明理由解:此時(shí)輪船沒有偏離航線理由:由題意,知DADB,ACBC,在ADC和BDC中,ADCBDC(SSS),ADCBDC,即DC為ADB的平分線,此時(shí)輪船沒有偏離航線20(8分)如圖,ABCD.(1)用直尺和圓規(guī)作C的平分線CP,CP交AB于點(diǎn)E;(保留作圖痕跡,不寫作法)(2)在(1)中作出的線段CE上取一點(diǎn)F,連接AF,要
7、使ACFAEF,還需要添加一個什么條件?請你寫出這個條件(只要給出一種情況即可;圖中不再增加字母和線段;不要求證明)解:(1)作圖略(2)AFCE或CAFEAF等21(10分)如圖,已知ABC中,12,AEAD,求證:DFEF.證明:在ABE和ACD中,ABEACD(AAS),ABAC,AEAD,ABADACAE,即BDCE,在BDF和CEF中,BDFCEF(AAS),DFEF.22(12分)如圖,在RtABC中,ABAC,BAC90,BD平分ABC交AC于點(diǎn)D,CEBD交BD的延長線于點(diǎn)E,則線段BD和CE具有什么數(shù)量關(guān)系?證明你的結(jié)論解:BD2CE.證明:如圖,延長CE與BA的延長線交于點(diǎn)
8、F,BAC90,CEBD,BACDEC,ADBCDE,ABDDCE,在BAD和CAF中,BADCAF(ASA),BDCF,BD平分ABC,CEDB,F(xiàn)BECBE,在BEF和BEC中,BEFBEC(ASA),CEEF,DB2CE.23(14分)如圖,已知ABC中,ABAC10 cm,BC8 cm,點(diǎn)D為AB的中點(diǎn)如果點(diǎn)P在線段BC上以3 cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(1)若點(diǎn)Q與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,BPD與CQP是否全等?請說明理由;(2)若點(diǎn)Q與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時(shí),能使BPD與CQP全等?解:(1)全等理由如下:
9、ABC中,ABAC,BC,由題意可知,BDAB5 cm,經(jīng)過1秒后,PB3 cm,PC5 cm,CQ3 cm,在BPD和CQP中,BPDCQP(SAS)(2)設(shè)點(diǎn)Q的運(yùn)動速度為x(x3)cm/s,經(jīng)過t sBPD與CQP全等,則可知PB3t cm,PC(83t) cm,CQxt cm,ABAC,BC,根據(jù)全等三角形的判定定理SAS可知,有兩種情況:當(dāng)BDPC,BPCQ時(shí),83t5且3txt,解得t1,x3,x3,舍去此情況;當(dāng)BDCQ,BPPC時(shí),5xt且3t83t,解得t,x.故若點(diǎn)Q與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為 cm/s時(shí),能使BPD與CQP全等24(14分)【問題提出】學(xué)習(xí)
10、了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究【初步思考】我們不妨將問題用符號語言表示為:在ABC和DEF中,ACDF,BCEF,BE,然后,對B進(jìn)行分類,可分為“B是直角、鈍角、銳角”三種情況進(jìn)行探究【深入探究】第一種情況:當(dāng)B是直角時(shí),ABCDEF.(1)如圖,在ABC和DEF中,ACDF,BCEF,BE90,根據(jù)HL,可以知道RtABCRtDEF.第二種情況:當(dāng)B是鈍角時(shí),ABCDEF.(2)如圖,在ABC和DEF中,ACDF,BCEF,BE,且B,E都
11、是鈍角,求證:ABCDEF.第三種情況:當(dāng)B是銳角時(shí),ABC和DEF不一定全等(3)在ABC和DEF中,ACDF,BCEF,BE,且B,E都是銳角,請你用尺規(guī)在圖中作出DEF,使DEF和ABC不全等(不寫作法,保留作圖痕跡)(4)在(3)中,B還要滿足什么條件,就可以使ABCDEF?請直接寫出結(jié)論:在ABC和DEF中,ACDF,BCEF,BE,且B,E都是銳角,若BA,則ABCDEF.解:(1)HL(2)證明:過點(diǎn)C作CGAB交AB的延長線于點(diǎn)G,過點(diǎn)F作FHDE交DE的延長線于點(diǎn)H(圖略),ABCDEF,且ABC,DEF都是鈍角,180ABC180DEF,即CBGFEH,在CBG和FEH中,CBGFEH(AAS),CGFH,在RtACG和RtDFH中,RtACGRtDFH(HL),AD,在ABC和DEF中,ABCDEF(AAS)(3)如圖,DEF和ABC不全等(4)BA7