5m鉆深32mm孔徑底板錨索鉆機(jī)設(shè)計(jì)(全套含8張CAD圖紙、說(shuō)明書(shū))
資源目錄里展示的全都有,所見(jiàn)即所得。下載后全都有,請(qǐng)放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問(wèn)可加】
任 務(wù) 書(shū)
1.畢業(yè)設(shè)計(jì)的背景:
針對(duì)深部破碎圍巖,需要形成一套完善的錨桿鉆孔設(shè)備,對(duì)巷道底板進(jìn)行實(shí)施錨桿支護(hù),使錨桿支護(hù)技術(shù)和方法得到完善。通過(guò)對(duì)該鉆孔設(shè)備的研究,將進(jìn)一步推動(dòng)錨桿支護(hù)在我國(guó)煤礦高應(yīng)力軟巖支護(hù)中的應(yīng)用,為煤礦高應(yīng)力軟巖巷道底板快速錨桿支護(hù)提供有力的技術(shù)支撐,同時(shí)實(shí)現(xiàn)一定的經(jīng)濟(jì)和社會(huì)效益。
2.畢業(yè)設(shè)計(jì)(論文)的內(nèi)容和要求:
1)與課題有關(guān)的外文文獻(xiàn)翻譯不少于4000漢字;
2)設(shè)計(jì)說(shuō)明書(shū)的字?jǐn)?shù)不少于20000字;
3)畢業(yè)答辯圖紙總量不少于3張A0圖紙;
4)主要參考文獻(xiàn)不少于15篇(包括2篇以上外文文獻(xiàn))
3.主要參考文獻(xiàn):
[1]液壓傳動(dòng)與氣壓傳動(dòng)[M]. 冶金工業(yè)出版社 , 朱新才等, 2009
[2]機(jī)械設(shè)計(jì)手冊(cè)[M]. 化學(xué)工業(yè)出版社 , 成大先主編, 2002
[3]氣體動(dòng)力學(xué)基礎(chǔ)[M]. 西北工業(yè)大學(xué)出版社 , 王新月, 2006
[4]地下鑿巖設(shè)備[M]. 冶金工業(yè)出版社 , 周志鴻等編著, 2004
[5]氣動(dòng)錨桿鉆機(jī)的設(shè)計(jì)與研究[D]. 孫艷.遼寧工程技術(shù)大學(xué) 2006
4.畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃(以周為單位):
第一周、課題調(diào)研,查閱資料,熟悉AutoCAD等軟件的應(yīng)用功能。
第二周、完成開(kāi)題報(bào)告及外文資料翻譯
第三周、擬訂底板錨索鉆機(jī)總體設(shè)計(jì)方案
第四周、繪制錨索鉆機(jī)的工作原理圖
第五周、進(jìn)行有關(guān)計(jì)算,確定主要技術(shù)參數(shù)
第六周、完成主要裝置的選型
第七周、繪制錨索鉆機(jī)的裝配圖
第八周、,繪制錨索鉆機(jī)的裝配圖
第九周、,繪制機(jī)架裝配圖
第十周、繪制主要零件圖
第十一周、修改完善錨索鉆機(jī)的裝配圖
第十二周、撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)
第十三周、撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)
教研室審查意見(jiàn):
室主任簽名: 年 月 日
學(xué)院審查意見(jiàn):
教學(xué)院長(zhǎng)簽名: 年 月 日
開(kāi)題報(bào)告
課題名稱(chēng)
5m鉆深32mm孔徑底板錨索鉆機(jī)設(shè)計(jì)
課題來(lái)源
B.社會(huì)生產(chǎn)實(shí)踐
課題類(lèi)型
工程設(shè)計(jì)類(lèi)
1.選題的背景及意義:
1.1 課題研究的背景
煤炭是我國(guó)最主要的能源,所占比例長(zhǎng)期保持在70%以上,產(chǎn)量居世界第一,2011年全國(guó)煤炭產(chǎn)量已超過(guò)35億噸。據(jù)不完全統(tǒng)計(jì),我國(guó)國(guó)有大中型煤礦每年新掘進(jìn)的巷道總長(zhǎng)度高達(dá)10000余千米。目前,隨著淺部資源的逐漸減少和枯竭,煤礦巷道的深度在不斷向深部延伸。全國(guó)已有近30個(gè)礦區(qū)的開(kāi)采深度超過(guò)800m,大量礦井的開(kāi)采深度已超過(guò)1200m以上,甚至一些新建的礦井的深度就已超過(guò)1000m,隨著開(kāi)采深度的增加,深部巷道也出現(xiàn)了明顯的高壓、高滲透壓力和工程長(zhǎng)時(shí)間不穩(wěn)定等問(wèn)題。進(jìn)入深部開(kāi)采以后,許多原來(lái)認(rèn)為是硬巖的礦井也有部分或全部進(jìn)入軟巖狀態(tài)。常規(guī)的錨噴支護(hù)、U型鋼支架等難以控制深部高應(yīng)力圍巖軟化等引起的過(guò)量變形與破壞。
在深部地層中,圍巖處于高地應(yīng)力環(huán)境中,并且軟巖的強(qiáng)度低,單軸飽和抗壓強(qiáng)度在5MPa~15MPa之間,甚至更低,因此,圍巖變形破壞非常強(qiáng)烈,表現(xiàn)在:
(1)圍巖的自穩(wěn)時(shí)間短,來(lái)壓快。所謂自穩(wěn)時(shí)間,就是在沒(méi)有支護(hù)的情況下,圍巖從暴露到開(kāi)始失穩(wěn)的時(shí)間。軟巖巷道的自穩(wěn)時(shí)間僅為幾十分鐘到幾個(gè)小時(shí),巷道來(lái)壓快。
(2)圍巖變形量大、速度快、持續(xù)時(shí)間長(zhǎng)。深部高應(yīng)力軟巖巷道的特點(diǎn)就是圍巖變形速度快、變形量大、持續(xù)時(shí)間長(zhǎng)。一般來(lái)說(shuō)100mm/d,巷道掘進(jìn)的第1~2天,變形速度少的5~10 mm/d,多的達(dá)50~100 mm/d,變形持續(xù)時(shí)間一般為25~60天,有的長(zhǎng)達(dá)半年以上仍不穩(wěn)定。
(3)圍巖四周來(lái)壓、底鼓明顯。在較硬巖層中,圍巖對(duì)支護(hù)的壓力主要來(lái)自頂板,中硬巖層圍巖對(duì)支護(hù)的壓力主要來(lái)自頂板和兩幫,但在深部高應(yīng)力軟巖巷道中,中硬巖層圍巖對(duì)支護(hù)的壓力則是四周來(lái)壓、底鼓明顯。底鼓明顯是高應(yīng)力軟巖巷道的重要特征。
(4)普通的剛性支護(hù)普遍破壞。深部高應(yīng)力軟巖巷道變形量大、持續(xù)時(shí)間長(zhǎng),普通剛性支護(hù)所承受的變形壓力很大,施工后很快就發(fā)生破壞。
原巖應(yīng)力較高,故一旦開(kāi)挖,隨即發(fā)生內(nèi)應(yīng)力釋放和回彈,并引起相應(yīng)的應(yīng)力的調(diào)整和變形。巷道開(kāi)挖卸荷相當(dāng)于在原巖應(yīng)力狀態(tài)上疊加相應(yīng)反方向拉應(yīng)力,于是工程巖體(尤其是層狀和似層狀巖體)在類(lèi)似橫彎或縱彎作用下發(fā)生撓曲,或者沿結(jié)構(gòu)面發(fā)生剪脹滑移變形,巖體強(qiáng)度降低,圍巖發(fā)生體積膨脹變形(擴(kuò)容)。應(yīng)力釋放引起的回彈和應(yīng)力調(diào)整引起的擴(kuò)容使巖體中原本閉合的結(jié)構(gòu)面張開(kāi)滑移,在改變巖體應(yīng)力狀態(tài)和強(qiáng)度的同時(shí),也改變了圍巖水文地質(zhì)條件,工程用水沿張開(kāi)裂隙滲流,進(jìn)一步降低了巖體強(qiáng)度,或者加劇了具有膨脹性巖石的物理化學(xué)膨脹和力學(xué)膨脹,從而使圍巖產(chǎn)生較大的收斂位移,變現(xiàn)為側(cè)墻鼓出、底鼓和頂壓等。
2.研究?jī)?nèi)容擬解決的主要問(wèn)題:
本文從工程應(yīng)用的角度出發(fā),研究一種適用于高應(yīng)力軟巖巷道底板錨固施工的履帶式液壓底板錨索鉆機(jī),以實(shí)現(xiàn)和加快底板錨固的作業(yè),實(shí)現(xiàn)軟巖巷道全斷面的錨固,有效控制巷道變形,主要研究?jī)?nèi)容如下:
(1)履帶式全液壓底板錨索鉆機(jī)的結(jié)構(gòu)設(shè)計(jì)研究;
(2)液壓系統(tǒng)的設(shè)計(jì)研究。
3.研究方法技術(shù)路線:
1. 在接到5m鉆深32mm孔徑底板錨索鉆機(jī)設(shè)計(jì)設(shè)計(jì)任務(wù)書(shū)后,首先要仔細(xì)閱讀,明確設(shè)計(jì)要求以及所給的各參數(shù),在心中明確一個(gè)大致的設(shè)計(jì)思路。
2. 通過(guò)閱讀學(xué)習(xí)相關(guān)文獻(xiàn)資料,了解之前的錨索鉆機(jī)的設(shè)計(jì)過(guò)程以及學(xué)習(xí)Pro/E,CAD建模繪圖。3.運(yùn)用Pro/E進(jìn)行三維建模和工程圖的繪制以及運(yùn)動(dòng)仿真。5.結(jié)合國(guó)內(nèi)外已有的錨索鉆機(jī)來(lái)優(yōu)化并完善自己的設(shè)計(jì)。
4.研究的總體安排和進(jìn)度計(jì)劃:
第1周 查閱資料;
第2周 撰寫(xiě)開(kāi)題報(bào)告;
第3周 錨索鉆機(jī)總體方案設(shè)計(jì);
第4周 錨索鉆機(jī)結(jié)構(gòu)的設(shè)計(jì)及研究;
第5周 各部分零件結(jié)構(gòu)設(shè)計(jì)、零件圖的繪制;
第6周 完成總裝配圖;
第7、8周 三維建模、仿真;
第9~11周 完成英文翻譯、撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)初稿、查重;
第12周 修改畢業(yè)設(shè)計(jì)說(shuō)明書(shū)、定稿;
第13周 準(zhǔn)備答辯。
5.主要參考文獻(xiàn):
[1] 張忠林. Pro/ENGINEER Wildfire 5.0機(jī)械設(shè)計(jì)應(yīng)用實(shí)踐[M].北京: 機(jī)械工業(yè)出版社, 2010.
[2]濮良貴.機(jī)械設(shè)計(jì)[M].北京:高等教育出版社, 2014.
[3]邢邦圣.機(jī)械制圖與計(jì)算機(jī)繪圖[M].北京:化學(xué)工業(yè)出版社, 2011.
[4]陳秀寧.機(jī)械設(shè)計(jì)課程設(shè)計(jì)[M].浙江:浙江大學(xué)出版社, 2012.
[5]機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(新版)[M].北京:機(jī)械工業(yè)出版社,2004.
[6]吳宗澤,羅圣國(guó).機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè)[M].3版,北京:高等教育出版社,2006.
[7]姜繁.國(guó)內(nèi)外液壓氣動(dòng)系統(tǒng)接頭手冊(cè)[M].北京:中國(guó)標(biāo)準(zhǔn)出版社,1993.
[8]程乃士.減速器和變速器設(shè)計(jì)與選用手冊(cè)[M].北京市:機(jī)械工業(yè)出
版社,2006.
[9]陶冶.材料成形技術(shù)基礎(chǔ)[M].北京:機(jī)械工業(yè)出版社,2002.
[10]趙雪松,任小華,于華.機(jī)械制造裝備設(shè)計(jì)[M] .武漢:華中科技大學(xué)
出版社,2009.
[11]張顯偉,胡靜.Word綜合應(yīng)用[M].北京:清華大學(xué)出版社,2006.
[12]戴娟,夏尊鳳,汪大鵬.圓柱齒輪減速器設(shè)計(jì)中應(yīng)考慮的問(wèn)題[J].長(zhǎng)
沙大學(xué),2005.
[13]張展.齒輪設(shè)計(jì)與實(shí)用數(shù)據(jù)速查[M].北京:機(jī)械工業(yè)出版社,2009.
[14]A.M.Michael, S.D.Khepar, S.K.Sondhi. Water Wells and Pumps [J]. New Delhhi, India: Tata-McGraw-Hill Publishing Company LTD, 2008.
[15]Dennis P. Nolan .Fire Fighting Pumping Systems at Industrial Facilities [J] .New Jersey, USA: Noyes publications, 1998.
[16]Garr M. Jones, Robert L. Sank, Bayard E. Baseman, George Tchobanoglous. Pumping station design [J] .Burlington. USA: Elsevier Inc,2008.
[17] William B. Rugh, Waterville, Ohio,Right angle drive gearbox [J] .Publication Date: 03/07/2000,1-6
指導(dǎo)教師意見(jiàn):
對(duì)“文獻(xiàn)綜述”的評(píng)語(yǔ): 文獻(xiàn)綜述深入全面 對(duì)總體安排和進(jìn)度計(jì)劃的評(píng)語(yǔ) 進(jìn)度安排恰當(dāng)合理,同意開(kāi)題
指導(dǎo)教師簽名: 年 月 日
教研室意見(jiàn):
通過(guò),同意開(kāi)題
教研室主任簽名: 年 月 日
學(xué)院意見(jiàn):
教學(xué)院長(zhǎng)簽名: 年 月 日
外文翻譯
英文部分
Study of electro-hydraulic feed System of Hydraulic Roof Bolter based on fuzzy reliability theory
Huang Zizhai,Zhao Jingyi
Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University,
Qinhuangdao, Hebei
Abstract: Based on the theory of fuzzy mathematics to describe working conditions of the system, which combined with experiments, to be a calculation method with membership function of normal distribution. It was closer to the actual conditions, so as to ensure system reliability. To introduce construction conditions and performance characteristics of electro-hydraulic feed System of Hydraulic Roof Bolter, and connected with experiment data of practical construction, the feasibility of research method was verified.
Keywords: Fuzzy Reliability; Hydraulic Roof Bolter; The Electro-hydraulic System; Normal Distribution
I. INTRODUCTION
Electro-hydraulic system is a key part of construction machinery. Now, electrical and hydraulic is more and more closely integrated, it is necessary to study the integrated reliability of the system with the part of electric control[1]. And the key factor to guarantee normal working of Hydraulic Roof Bolter is higher reliability of electro-hydraulic system. But, the system from normal to failure shows many the states of transition. And it is often so difficult to use accurately numeric to describe the probability of reliability. It is more scientific and rational way, with fuzzy theory, to solve the problems of fuzzy reliability between totally invalid and completely normal [2].
Hydraulic Roof Bolter is a important equipment in rock bolting. It is applied to improve ability of laterally loaded in dam foundation, pile foundation, retaining wall, slope treatment, and deep foundation pit (Fig.1). For using electro-hydraulic feed System, the unfavorable factors were heavy and complexity load, long work time, frequent fro movement and adverse working environment etc. So the failure rate was high.
Figuer.1 Hydraulic Roof Bolter
II. THE CALCULATION METHOD OF FUZZY RELIABILITY
A. The definition of fuzzy reliability of components
For independent components in system, it was described as i (i = 1, 2,3, n). The inherent performance indexes were rated pressure, voltage, flow and current etc, which were discrete random variable. It was expressed as S . The function indexes in system were tempera-ture and humidity, pressure, voltage, flow and current of system and cleanliness of oil etc, which were discrete fuzzy variable. It was expressed as . The formula of fuzzy reliability of components was:
(1)
Where, -----the value of the i th inherent performance index of component i (i =1,2,3,… n)
----- the i th value of function index of component i (i =1,2,3,… n)
----- the probability of the i th inherent performance index of the n th component
----- the subordinate function of the i th function index of the n th component
---- the subordinate function of the i th function index of the n th component in threshold
The f was worked out by fuzzy component failure rate, its calculation formula was:
(2)
B. The Calculation Model of Fuzzy Reliability
The method of L A Zadeh is:
(3)
Where, the did not expressed fraction, but expressed a corresponding relation from (elements in universe ( U)) to (membership function). And the“+” was not summation but signs integral of fuzzy set in universe U . For failure series system, the system was normal when every component was normal working, otherwise, it was failure. To set the U was real number field, and the was fuzzy reliability of system that was approximately normal working. That was:
Where, ----- the fuzzy reliability of the i th component
----- the number of components
The general calculation method was that set the U as real number field, and the as fuzzy reliability of component that was approximately normal working.
Fig.2 linear representation
That was:
Where, : the mean of the fuzzy number
: the lower confidence limit
: the upper confidence limit
The linear representation of it is:
If the function of and the function of were linear, the was 1. If the variable was or , the was 0. If it was in , was .If the was more closely , the was more closely 1.
By the calculation method used normal distribution,the general calculation method was simple and easy[3]. But the sample space of failure probability of many components was accord with normal distribution. So the calculation method was used by normal distribution that was accurate and reasonably.
To set the U was real number field, and thewas fuzzy reliability of component that was approximately normal working. That was:
Where, : the mean of the fuzzy number
: the lower confidence limit
: the upper confidence limit
Fig.3 the normal distribution
Theandwere obtained by calculation of interval estimation of normal distribution, the calculation formula was:
Where, : the unbiased estimation of
、:the percentile value of standard normal distribution
:the confidence level
:the value is obtained by different components parameter
:the number of sample
As stated above, the confidence interval was:
Namely:
The number of was corresponding to the 1 of membership degree.
If , assumed the membership degree was 0.
If ,the membership degree was .
The was:
III. THE CALCULATION OF FUZZY RELIABILITY OF ELECTRO-HYDRAULIC FEED SYSTEM OF HYDRAULIC ROOF BOLTER
The study calculation was a example by electro-hydraulic feed System of Hydraulic Roof Bolter.The feed System that was the longest work time was in the electro-hydraulic of Hydraulic Roof Bolter. That was favorable factor for the calculation.
Fig.4 structure diagram of Hydraulic Roof Bolter
Fig.5 structure diagram of feed System
Fig.6 The Electro-hydraulic System Logic
The electro-hydraulic feed System of Hydraulic Roof Bolterwere formed with variable pump (I1), gear pump(I2), oil handle(I3), proportional valve(I4), pressure sensor(I5),controller(I6), unravelcylinder(I7). Fig.5. The unravel cylinder drove the power head to unravel and fallback. The construction process of the system was: the first, for drilling, the unravel cylinder provided power to overcome load. The load was large and several variable. The second, for adding pipe, the worker needed to add the other pipe after drilling in a pipe for the demand of depth. For clamping the pipe by fixture, providing overcome power by cylinder to shackle, driving the power head on start point and connecting pipe, the process was accomplished. The third, for drawing water slag discharge, which was needed slag discharge by water into enough depth. The crushed stone and soil was exhaust with water by fro movement of inside drill rod. The inside drill rod was drove by unravel cylinder, which was linked together the power head. For pulling out pipe, the process was opposite to adding pipe, when the construction of the one of borehole. But the load was largest and the pressure was highest.
For electro-hydraulic feed System, the system was normal when every component was normal working, otherwise, it was failure. So that was failure series system, which were composed of seven components.
As stated above, obtain the fuzzy number of the i th component. That was:
When two components were in the system:
Then, n components were in the system, deducing the calculation formula:
The calculation of fuzzy reliability of electro-hydraulic feed System of Hydraulic Roof Bolter was:
Fig.7 experiment in workshop
Fig.8 experiment in construction site
With the maintain and repair work eight-hour records each day for ten months, to every work week for the cycle, collecting pressure, temperature and other signals, obtained the necessary experiment data. By applying the data provided by manufacturer, reference documents and experiment, the of every component was obtained. And it was into equation from (6) to (9), calculating out the value of and. Such as:
Tab-1
The value of tab-1induced into (12) calculating to obtain that:
Fig.9 the failure components
The results showed that the fuzzy reliability was 0.72817, the membership degree was 1, when the electro-hydraulic feed System of Hydraulic Roof Bolter was working. The reliability of the system was among 0.55024 and 0.90526. In other words, the probability of the value of reliability of the system was about normal distribution.
IV. Conclusions
To comparatively completely describe the changing rules of the reliability of the electro-hydraulic feed system on the basis that fuzzy theory and reliability theory. The calculation method with membership function of normal distribution was proposed, with tracking experiments, that the result was dependability and accuracy. To introduce construction conditions and performance characteristics of electro-hydraulic feed System of Hydraulic Roof Bolter, and connected with experiment data of practical construction, the feasibility of research method was verified. Then, the analysis method was showed effective to study reliability for the electro-hydraulic feed system of Hydraulic Roof Bolter, and providing the scientific theory reference for the reliability design and failure diagnosis which is more and more nowadays.
REFERENCES
[1] Zhao Jingyi; Yao Chengyu. Progress of reliab- ility research on hydraulic system [J]. Hydraulics Pneumatics & Seals, 2006(3):50~52
[2] Zhao Jingyi, Guo Rui and Wang Zhiyong. The developing of independent suspension and its electro-hydraulic control system of heavy platform vehicle. Journal of Northeastern University, 2008, vol.29, pp237-240
[3] Guo Rui, Li Na, Zhao Jingyi. Design and Development of SPC90 Slag Pot Carrier of Large Steel Slag TransportationSpecial Device for Steel Mills. 2010 WASE International conference on Information Engineering. Beidai River, China, 2010, pp320-323
[4] Wang Peizhuang. Fuzzy Set Theoryand its App- lication[M]. SHANGHAI SCIENCE & TECH- NOLOGY PUBLISHINGHOUSE , 1983.
[5] Xu Yaoming. The Basis of Hydraulic Reliability Engineering [M]. HARBIN INSTITUTE OF TE- CHNOLOGY PRESS.1991.
New generation automated drilling machine for tunneling and underground mining work
Jacek Karliński
Abstract:
Selected problems of designing a new generation automated drilling machine for tunnelling and underground mining work are presented. The requirements needed to build a machine of this class were identified and collected. An original concept of the self-propelled drilling machine was developed. A virtual model of the machine was created and subjected to different numerical cases of loading. FEM strength calculations of the load- bearing structures were carried out. All the machine's work operations have been fully automated. The result is a new original automated drilling machine.@2007Elsevoer B.VAll righrs reserved.
Keywords: FEM; Drilling machine; Mining
1. Introduction
Drilling machines find application in tunnelling and mining excavation. Such machines must be functional and meet user expectations. A new original automated modular drilling machine shown in Fig. 1 is proposed.
Depending on the model, the Self-Propelled Mining Machine can be used to drill shot holes or anchor holes. All its types and varieties have an identical complete tractor and afront platform (Fig. 1) and differ mainly in the work booms and their attachments. The new generation drilling machine's intended use is roof bolting or (after retooling and hydraulic system modification) shot hole boring in tunnelling and underground mining excavation.
Fig. 1. Self-propelled modular drilling machine with two booms.
The drilling machine consists of a universal tractor, a front platform with an operator protecting structure and a straight-line boom to which different work tools can be attached. The machine can fit expansion and adhesive anchors with a length of 1.8–2.6 m and a diameter of 28–38 mm and drill shot holes 45–76 mm in diameter and up to 4340 mm long. Thanks to the load-sensing hydraulic system equipped with ergonomic joysticks the work tools can be quickly reset and the hydraulic feed can be quickly adjusted to the power demand of the drifter drills boring shot holes or anchor holes. The modern hydrostatic drive unit allows the machine to negotiate longitudinal elevations at an angle of up to 12°in underground excavations and ensures flexible transfer of drive from the combustion engine to the road wheels. Meeting all the noise and exhaust cleanliness the drive unit ensures excellent ergonomic conditions for the operator during driving.
Since the operator will work in very difficult environmental conditions, i.e. at high ambient temperatures (above 35 °C), high humidity (around 95%) and in enclosed areas with limited air movement (mine faces), the machine should be equipped with an air-conditioned ergonomic cabin. The machine has an original straight-line boom (Fig. 2) rotatable by 360° whose kinematics enables boring parallel holes in mining excavations 35 m2 in cross-section and roof bolting in 7.5 m wide and 7.0 m high excavations at one setting of the machine.
Fig. 2. Kinematics of boom rotatable by 360°
Fig. 3. 3D virtual model of self-propelled drilling machine.
中文部分
基于模糊可靠性理論的液壓錨桿鉆機(jī)的電液進(jìn)料系統(tǒng)的研究
摘 要
基于模糊數(shù)學(xué)理論來(lái)描述系統(tǒng)的工作條件,與實(shí)驗(yàn)相結(jié)合,形成了一個(gè)采用正態(tài)分布隸屬函數(shù)的計(jì)算方法。它更接近實(shí)際情況,確保了系統(tǒng)的可靠性。介紹了液壓錨桿鉆機(jī)電液進(jìn)料系統(tǒng)的建立條件和性能特點(diǎn),并且聯(lián)系實(shí)際施工中的實(shí)驗(yàn)數(shù)據(jù),驗(yàn)證了研究方法的可行性。
關(guān)鍵詞:模糊可靠性;液壓錨桿鉆機(jī);電液控制系統(tǒng);正態(tài)分布
I. 引言
電液系統(tǒng)是工程機(jī)械的重要組成部分。目前,電氣和液壓越來(lái)越緊密地結(jié)合起來(lái),因此很有必要研究有電氣控制部分的集成系統(tǒng)的可靠性[1]。以保證液壓錨桿鉆機(jī)正常工作的關(guān)鍵因素是較高的電液系統(tǒng)的可靠性。然而,從系統(tǒng)正常運(yùn)行到出現(xiàn)故障顯示了過(guò)渡過(guò)程中的多種狀態(tài)。并且,往往很難用準(zhǔn)確的數(shù)字來(lái)描述可靠性的概率。更加科學(xué)合理的方法是,應(yīng)用模糊理論解決完全失效和完全正常之間的模糊可靠性問(wèn)題[2]。
液壓錨桿鉆機(jī)是巖石錨桿支護(hù)中的重要設(shè)備。它用于提高大壩地基、打樁地基、擋土墻、擋土墻、邊坡治理、深層地基等的橫向承載能力(如圖1)。由于使用電動(dòng)液壓進(jìn)料系統(tǒng)時(shí),存在復(fù)雜的重負(fù)荷、工作時(shí)間長(zhǎng)、頻繁往復(fù)運(yùn)動(dòng)和惡劣的工作環(huán)境等不利的因素,因此失效率較高。
圖1液壓錨桿鉆機(jī)
II.模糊可靠性的計(jì)算方法
A各組件的模糊可靠性定義
對(duì)于系統(tǒng)中的獨(dú)立分量,可描述為i(I = 1,2,3,N)。固有性能指標(biāo)為額定壓力、電壓、流量、電流等,均為離散型隨機(jī)變量,記作S。系統(tǒng)功能指標(biāo)包括溫度和濕度、壓力、電壓、系統(tǒng)的流量和電流以及石油清潔度等,均為離散的模糊變量,記作。分量的模糊可靠性計(jì)算公式為:
(1)
式中,-----第i分量的第i個(gè)固有性能指標(biāo)值(i= 1,2,3,...,N)
-----第i分量的第i個(gè)功能指標(biāo)值(i= 1,2,3,...,N)
-----第n個(gè)分量第i個(gè)固有的性能指標(biāo)的概率
-----第n 個(gè)分量第i個(gè)功能指標(biāo)的隸屬函數(shù)
----在閾值中第n個(gè)分量第i個(gè)功能指標(biāo)的隸屬函數(shù)
B模糊可靠性的計(jì)算模型
L. A. Zadeh方法為:
(3)
式中,不表示分?jǐn)?shù),而是表示從(總體中的元素)到(隸屬函數(shù))的對(duì)應(yīng)關(guān)系。 “+”不是和,而是在全域U中的模糊集的符號(hào)積分。對(duì)串聯(lián)故障系統(tǒng),當(dāng)每個(gè)組件的正常工作,該系統(tǒng)才是正常的。否則,它是存在故障的。把U設(shè)置為實(shí)數(shù)域,設(shè)置為近似正常的工作系統(tǒng)的模糊可靠性。即:
式中,-----第i個(gè)分量的模糊可靠性
-----分量的數(shù)目
一般的計(jì)算方法,是將U設(shè)為實(shí)數(shù)域,設(shè)為近似工作組件的模糊可靠性。
圖2 線性表示
即:
式中,:模糊數(shù)的平均值
:置信下限
:置信上限
它的線性表示含義為:
如果關(guān)于的函數(shù)和關(guān)于的函數(shù)均是線性的,則等于1;如果變量或者,則等于0;如果,且,則越趨近于,就越趨近于1。
應(yīng)用正態(tài)分布的計(jì)算方法,使一般的計(jì)算方法簡(jiǎn)易明了[3]。但是,許多組件的故障概率的樣本空間是符合正態(tài)分布。這樣用正態(tài)分布的計(jì)算方法精確合理的。
把U設(shè)置為實(shí)數(shù)域,設(shè)置為近似工作組件的模糊可靠性。則:
式中,:模糊數(shù)的平均值
:置信下限
:置信上限
圖3 正態(tài)分布
和是通過(guò)正態(tài)分布的區(qū)間估計(jì)獲得的,其計(jì)算公式為:
式中,:的無(wú)偏估計(jì)量
、:標(biāo)準(zhǔn)正態(tài)分布的百分值
:置信度
:由不同分量參數(shù)獲得的值
:樣本容量
如前所述,置信區(qū)間是:
即:
的數(shù)量對(duì)應(yīng)的隸屬度為1。
如果,假設(shè)隸屬度為0。
如果,隸屬度為,。
為:
III.液壓錨桿鉆機(jī)電液進(jìn)料系統(tǒng)的模糊可靠性計(jì)算
這項(xiàng)研究的計(jì)算以液壓錨桿鉆機(jī)的電液進(jìn)料系統(tǒng)為例。在液壓錨桿鉆機(jī)的電液系統(tǒng)中,進(jìn)料系統(tǒng)是工作時(shí)間最長(zhǎng)的,這對(duì)計(jì)算來(lái)講是有利因素。
圖4 液壓錨桿鉆機(jī)結(jié)構(gòu)圖
圖5 進(jìn)料系統(tǒng)的結(jié)構(gòu)圖
圖6 電液系統(tǒng)邏輯圖
液壓錨桿鉆機(jī)的電液進(jìn)料系統(tǒng)由變量泵(I1)、齒輪泵(I2)、油處理(I3)、比例閥(I4)、壓力傳感器(I5)、控制器(I6)、解開(kāi)缸(I7)組成,見(jiàn)圖5。解開(kāi)缸驅(qū)動(dòng)動(dòng)力頭瓦解和后援。該系統(tǒng)的建設(shè)過(guò)程是:第一,解開(kāi)缸提供動(dòng)力,以克服負(fù)載用于鉆井。負(fù)載較大,且為幾個(gè)分量。第二,加管,在管道鉆孔到需求深度時(shí),工人需要添加其他管道。由夾具夾緊管道,提供由缸束縛克服的力量,駕駛動(dòng)力頭的起點(diǎn)上,連接管,完成這個(gè)過(guò)程。第三,給水排渣,排放渣水排放到足夠的深度是必要的。碎石和土壤和水一起通過(guò)內(nèi)鉆桿來(lái)回運(yùn)動(dòng)排出。內(nèi)鉆桿由解開(kāi)缸驅(qū)動(dòng),解開(kāi)缸是和動(dòng)力頭聯(lián)系在一起的。拉出管道,當(dāng)一個(gè)鉆孔施工時(shí),這個(gè)過(guò)程與加入管相反,。但此時(shí)有最大的負(fù)荷和最高的壓力。
對(duì)于電液進(jìn)料系統(tǒng),當(dāng)每個(gè)組件正常工作時(shí),該系統(tǒng)才是正常的。否則,它是存在故障的。所以這是一個(gè)由七個(gè)部分組成串聯(lián)故障系統(tǒng)。
當(dāng)系統(tǒng)中的兩個(gè)部分正常工作,則:
當(dāng)系統(tǒng)中的n個(gè)部分正常工作,推導(dǎo)出計(jì)算公式:
液壓錨桿鉆機(jī)的電液進(jìn)料系統(tǒng)模糊可靠性的計(jì)算方法是:
圖7車(chē)間實(shí)驗(yàn)
圖8施工現(xiàn)場(chǎng)實(shí)驗(yàn)
隨著十個(gè)月每天工作8小時(shí)的維護(hù)和修復(fù)記錄,每工作周為1個(gè)周期,采集壓力、溫度和其他信號(hào),獲得了必要的實(shí)驗(yàn)數(shù)據(jù)。通過(guò)應(yīng)用制造商、參考文件和實(shí)驗(yàn)提供的數(shù)據(jù),得到了每一個(gè)組件的模糊數(shù)的平均值。將其代入方程式(6)到(9),計(jì)算出值和。見(jiàn)表1:
表1
將表1中的數(shù)據(jù)帶入到式子(12)得:
圖9 失效的部件
結(jié)果顯示液壓錨桿鉆機(jī)的電液進(jìn)料系統(tǒng)正常工作時(shí),模糊可靠性是0.72817,隸屬度為1時(shí)。該系統(tǒng)的可靠性在0.55024和0.90526之間。換句話(huà)說(shuō),系統(tǒng)的可靠性值的概率符合正態(tài)分布。
IV. 結(jié)論
基于模糊理論和可靠性理論,比較完整地描述了的電液進(jìn)料系統(tǒng)的可靠性的變化規(guī)律。通過(guò)跟蹤試驗(yàn),提出了采用正態(tài)分布隸屬函數(shù)計(jì)算方法,結(jié)果可靠精確。介紹了液壓錨桿鉆機(jī)電液進(jìn)料系統(tǒng)的建立條件和性能特點(diǎn),并聯(lián)系實(shí)際施工中的實(shí)驗(yàn)數(shù)據(jù),驗(yàn)證了研究方法的可行性。另外,結(jié)果表明,這種分析方法對(duì)研究液壓錨桿鉆機(jī)的電液進(jìn)料系統(tǒng)的可靠性比較有效,并且為當(dāng)今越來(lái)越普遍的可靠性設(shè)計(jì)和故障診斷提供了科學(xué)的理論依據(jù)的。
新一代隧道和地下采礦工作自動(dòng)鉆孔機(jī)
摘 要
本文介紹了在設(shè)計(jì)新一代隧道和地下采礦用自動(dòng)鉆機(jī)時(shí)的選擇問(wèn)題。要求須建一臺(tái)機(jī)器的這一類(lèi)分別鑒定和收集。發(fā)展(開(kāi)發(fā))了這些自行研制的鉆孔機(jī)的原始概念。建立了一個(gè)虛擬的模型,并將該模型應(yīng)用到各種不同數(shù)值載荷的情況。提出了負(fù)荷—軸承結(jié)構(gòu)相結(jié)合的有限元強(qiáng)度計(jì)算的方法。所有的機(jī)器的操作工作已經(jīng)完全自動(dòng)化。因而產(chǎn)生了一種新的原創(chuàng)的自動(dòng)鉆孔機(jī)。
關(guān)鍵詞:有限元建模;鉆孔機(jī);礦用
1介紹
鉆孔機(jī)在隧道和采礦挖掘中得到應(yīng)用。這類(lèi)機(jī)器必須功能齊全并滿(mǎn)足用戶(hù)的需求。圖1顯示了一個(gè)新的獨(dú)創(chuàng)的自動(dòng)化模塊鉆床。
圖1 自走式模塊化有兩個(gè)臂鉆床。
根據(jù)該模型,這種自推進(jìn)采礦機(jī)械可用于鉆孔或錨索孔。它所有的類(lèi)型和品種有一個(gè)相同的完整的牽引機(jī)和一個(gè)前面的平臺(tái)(圖1),和不同的工作主要在吊桿和他們的附件。新一代鉆孔機(jī)的用途是屋頂螺栓或(后重新組合和液壓系統(tǒng)修正)隧道和地下礦山鉆孔開(kāi)挖。
鉆井機(jī)器由一個(gè)通用牽引機(jī)、前面具有一個(gè)具有保護(hù)操作者的結(jié)構(gòu)的平臺(tái),另外給平臺(tái)還具有一個(gè)用于放不同工具的直線吊桿。這臺(tái)機(jī)器能適合擴(kuò)張和膠粘劑的1.8—2.6錨長(zhǎng)度和直徑28—38米和鉆洞45—76毫米直徑射擊和4340毫米長(zhǎng)。另外由于負(fù)載敏感液壓系統(tǒng)配備有符合人體工學(xué)的操縱桿,工作元件可以迅速?gòu)?fù)位,液壓動(dòng)力機(jī)構(gòu)可以快速調(diào)整以適應(yīng)鉆機(jī)鉆頭鏜孔或錨索的動(dòng)力需求?,F(xiàn)代靜液壓傳動(dòng)裝置可以調(diào)整使機(jī)器適應(yīng)高達(dá)12°角的地下挖掘,并可確保驅(qū)動(dòng)從內(nèi)燃機(jī)到車(chē)輪靈活轉(zhuǎn)移。駕駛室擁有出色的人體工程學(xué)操縱條件,并可使所有的噪音和廢氣減少。
由于操作者工作條件非常艱苦,比如高溫度(高于35 °C)高濕度(約95%)的封閉區(qū),空氣流動(dòng)(礦面)有限,機(jī)器要配備一個(gè)配有空調(diào)的人性化的操作室。本機(jī)擁有一個(gè)可旋轉(zhuǎn)360°的直線吊臂(圖2),通過(guò)一次設(shè)置機(jī)器,該吊臂的運(yùn)動(dòng)可以在35㎡截面上挖掘7.5米寬7.0米高的錨桿支護(hù)平行孔。
設(shè)計(jì)這款機(jī)器的建議和指導(dǎo)方針是基于市場(chǎng)調(diào)查而制定的
第一組指導(dǎo)方針包括機(jī)器的外型尺寸和參數(shù):
— 運(yùn)輸高度:最大 2500毫米;
—一個(gè)帶空調(diào)的可選擇駕駛室;
—錨固挖掘高度:最大 6.5米,鉆孔截面積:30÷35平方米;
— 駕駛挖掘?qū)挾龋鹤畲?4.5米;
—開(kāi)挖的縱向坡度:12 °,橫坡:7°;
—機(jī)器的寬度:最大 2200毫米;
—機(jī)器的速度:一檔— 高達(dá)5公里/小時(shí),二檔 —高達(dá)12公里/小時(shí);
—與一靜液壓傳動(dòng)裝置,驅(qū)動(dòng)裝置可選hydrokinetic標(biāo)準(zhǔn)模型
—操縱室強(qiáng)度必須滿(mǎn)足要求:能量11600J(根據(jù)保護(hù)操作機(jī)構(gòu)的需要)
—無(wú)論駕駛和工作時(shí),操縱室需要開(kāi)空調(diào);有效的冷卻溫度:最小 282K(5℃),
礦山表層外部溫度:308÷345 K,高濕度,當(dāng)移動(dòng)到一個(gè)新的工作面時(shí)溫度和濕度頻繁變化。
圖2 吊桿360°動(dòng)力旋轉(zhuǎn)。 圖3自走式鉆機(jī)三維虛
21
收藏
鏈接地址:http://italysoccerbets.com/article/83596842.html