大迪輕型客貨車(chē)1021SC車(chē)橋設(shè)計(jì)【含6張CAD圖紙】
大迪輕型客貨車(chē)1021SC車(chē)橋設(shè)計(jì)【含6張CAD圖紙】,含6張CAD圖紙,輕型,客貨,1021,SC,設(shè)計(jì),CAD,圖紙
附 錄
(1)外文文獻(xiàn)
Drive axle/differential
All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.
Powerflow
See Figure 1
The drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.
This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.
Figure 1 Component parts of a typical driven axle assembly
Differential operation
See Figure 2
The differential is an arrangement of gears with two functions: to permit the rear wheels to turn at different speeds when cornering and to divide the power flow between both rear wheels.
The accompanying illustration has been provided to help understand how this occurs. The drive pinion, which is turned by the driveshaft, turns the ring gear (1).
The ring gear, which is attached to the differential case, turns the case (2).
The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case (3).
The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft (4).
Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit (5).
The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns (6).
When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears (7).
When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds (8).
As the inner wheel slows down, the side gear splined to the inner wheel axle shaft also slows. The pinion gears act as balancing levers by maintaining equal tooth loads to both gears, while allowing unequal speeds of rotation at the axle shafts. If the vehicle speed remains constant, and the inner wheel slows down to 90 percent of vehicle speed, the outer wheel will speed up to 110 percent. However, because this system is known as an open differential, if one wheel should become stuck (as in mud or snow), all of the engine power can be transferred to only one wheel.
Figure 2 Overview of differential gear operating principles.
Limited-slip and locking differential operation
See Figure 3
Limited-slip and locking differentials provide the driving force to the wheel with the best traction before the other wheel begins to spin. This is accomplished through clutch plates, cones or locking pawls.
The clutch plates or cones are located between the side gears and the inner walls of the differential case. When they are squeezed together through spring tension and outward force from the side gears, three reactions occur. Resistance on the side gears causes more torque to be exerted on the clutch packs or clutch cones. Rapid one wheel spin cannot occur, because the side gear is forced to turn at the same speed as the case. So most importantly, with the side gear and the differential case turning at the same speed, the other wheel is forced to rotate in the same direction and at the same speed as the differential case. Thus, driving force is applied to the wheel with the better traction.
Locking differentials work nearly the same as the clutch and cone type of limited slip, except that when tire speed differential occurs, the unit will physically lock both axles together and spin them as if they were a solid shaft.
Figure 3 Limited-slip differentials transmit power through the clutches or cones to drive the wheel having the best traction.
Identifying a limited-slip drive axle
Metal tags are normally attached to the axle assembly at the filler plug or to a bolt on the cover. During the life of the vehicle, these tags can become lost and other means must be used to identify the drive axle.
To determine whether a vehicle has a limited-slip or a conventional drive axle by tire movement, raise the rear wheels off the ground. Place the transmission in PARK (automatic) or LOW (manual), and attempt to turn a drive wheel by hand. If the drive axle is a limited-slip type, it will be very difficult (or impossible) to turn the wheel. If the drive axle is the conventional (open) type, the wheel will turn easily, and the opposing wheel will rotate in the reverse direction.
Place the transmission in neutral and again rotate a rear wheel. If the axle is a limited-slip type, the opposite wheel will rotate in the same direction. If the axle is a conventional type, the opposite wheel will rotate in the opposite direction, if it rotates at all.
Gear ratio
See Figure 4
The drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. Actually, with a 4.11 ratio, there might be 37 teeth on the ring gear and 9 teeth on the pinion gear. By dividing the number of teeth on the pinion gear into the number of teeth on the ring gear, the numerical axle ratio (4.11) is obtained. This also provides a good method of ascertaining exactly which axle ratio one is dealing with.
Another method of determining gear ratio is to jack up and support the vehicle so that both drive wheels are off the ground. Make a chalk mark on the drive wheel and the driveshaft. Put the transmission in neutral. Turn the wheel one complete turn and count the number of turns that the driveshaft/halfshaft makes. The number of turns that the driveshaft makes in one complete revolution of the drive wheel approximates the axle ratio.
Figure 4 The numerical ratio of the drive axle is the number of the teeth on the ring gear divided by the number of the teeth on the pinion gear.
(2)文獻(xiàn)翻譯
驅(qū)動(dòng)橋/微分
所有車(chē)輛有某種類(lèi)型的驅(qū)動(dòng)橋/微分裝配納入動(dòng)力傳動(dòng)系統(tǒng)。不管它是前、后或四輪驅(qū)動(dòng),差距是必要的,為順利應(yīng)用發(fā)動(dòng)機(jī)功率的馬路上。
看到圖1
圖1
傳輸功率的汽車(chē)車(chē)橋必須通過(guò)一個(gè)90°角的影響。在傳統(tǒng)的流程引擎/力量面前后輪驅(qū)動(dòng)的車(chē)輛從發(fā)動(dòng)機(jī)到移動(dòng)驅(qū)動(dòng)橋大約在一條直線。然而,在汽車(chē)車(chē)橋、權(quán)力必須被轉(zhuǎn)變成直角(從線的傳動(dòng)軸上)和直接跳轉(zhuǎn)到驅(qū)動(dòng)輪。
這是一個(gè)小齒輪驅(qū)動(dòng)齒輪來(lái)完成,它把一個(gè)圓環(huán)形齒輪。環(huán)形齒輪系在一微分住房,包含一套小齒輪,每到軸。隨著住房轉(zhuǎn)動(dòng)時(shí),內(nèi)部差動(dòng)齒輪軸轉(zhuǎn)動(dòng)輪軸,也是連接到驅(qū)動(dòng)輪。
圖1三個(gè)組成部分典型的驅(qū)動(dòng)橋總成。
差動(dòng)
參見(jiàn)圖2
圖2
差壓的安排是齒輪和兩個(gè)功能:允許后輪轉(zhuǎn)向以不同速度轉(zhuǎn)彎和分開(kāi)時(shí),二者之間的功率流后輪。
所附插圖都被提供,幫助大家了解這發(fā)生。在驅(qū)動(dòng)小齒輪,它是由傳動(dòng)軸上,輪流轉(zhuǎn)環(huán)形齒輪(1)。
環(huán)形齒輪,這是連接到微分案例,把格(2)。
齒輪軸,位于是個(gè)令人討厭的家伙在差分案子里,是角度正確的剛性車(chē)軸,并將這個(gè)案子,(3)。
差動(dòng)齒輪(驅(qū)動(dòng))齒輪安裝在齒輪軸的旋轉(zhuǎn),以軸(4)。
微分側(cè)方齒輪組(驅(qū)動(dòng))與齒輪插齒齒輪相嚙合,把與微分住房和環(huán)形齒輪作為一個(gè)單位(5)。
側(cè)方齒輪組是到內(nèi)在剛性車(chē)軸的兩端且轉(zhuǎn)動(dòng)軸隨著住房轉(zhuǎn)(6)。
當(dāng)兩輪有平等的牽引力,插齒齒輪不旋轉(zhuǎn)的齒輪軸上,因?yàn)檩斎肓Φ牟妪X齒輪是平分秋色兩個(gè)側(cè)方齒輪組(7)。
當(dāng)有必要把一個(gè)角落,差動(dòng)齒輪生效,并允許軸軸旋轉(zhuǎn)速度不同(8)。
當(dāng)內(nèi)在的車(chē)輪減速時(shí),其側(cè)齒輪軸內(nèi)輪也慢了下來(lái)。作為平衡齒輪齒牙負(fù)荷杠桿通過(guò)維持兩個(gè)相等的齒輪,同時(shí)讓不平等的速度在軸旋轉(zhuǎn)軸心。如果車(chē)輛速度不變,和內(nèi)心的車(chē)輪開(kāi)始減緩到90%的車(chē)速度、外部輪將加快向110個(gè)百分點(diǎn)。然而,因?yàn)楸鞠到y(tǒng)被認(rèn)為是一個(gè)開(kāi)放的微分,如果有一個(gè)輪子卡住了(如應(yīng)成為在泥地或雪地上),所有的發(fā)動(dòng)機(jī)功率可以轉(zhuǎn)移到只有一個(gè)輪子。
圖2的概述微分齒輪的經(jīng)營(yíng)方針。
Limited-slip和鎖定差動(dòng)式操作
看到如圖3
圖3
Limited-slip和鎖定差距提供驅(qū)動(dòng)力方向盤(pán),與在其他的最佳牽引輪開(kāi)始旋轉(zhuǎn)。這是完成離合器片,通過(guò)pawls錐或鎖定。
離合器盤(pán)或者錐細(xì)胞位于即墨市側(cè)方齒輪組和內(nèi)部墻面微分案件。當(dāng)他們被擠壓的彈簧拉力,一起經(jīng)歷的向外的力量從側(cè)面齒輪、三種不良反應(yīng)的發(fā)生。電阻對(duì)側(cè)方齒輪組產(chǎn)生更大的扭矩是對(duì)離合器包或離合器球果。有一個(gè)輪子旋轉(zhuǎn)快速不能發(fā)生,因?yàn)樯磉咠X輪被迫轉(zhuǎn)向以相同的速度為例。所以最重要的是,球隊(duì)的齒輪和差壓情況下轉(zhuǎn)向以相同的速度,其他的車(chē)輪被迫以同一方向旋轉(zhuǎn),和以相同的速度為微分案件。因此,應(yīng)用動(dòng)力方向盤(pán),與更好的抓地力。
鎖差速器的工作幾乎一樣的離合器和錐型,除了當(dāng)限滑胎速度微分發(fā)生時(shí),該單位將身體上兩根軸旋轉(zhuǎn)鎖在一起,他們,如果他們一個(gè)堅(jiān)實(shí)的軸上。
圖3 Limited-slip傳輸功率的差離合器圓錐或通過(guò)驅(qū)動(dòng)輪擁有世界一流的牽引力。
識(shí)別一個(gè)limited-slip車(chē)橋
金屬標(biāo)簽通常是連接到軸總成的插頭或一道填料上封面。在生命的車(chē)輛,這些標(biāo)簽會(huì)變得失去了和其他途徑必須被用來(lái)識(shí)別汽車(chē)車(chē)橋。
是否有一個(gè)limited-slip汽車(chē)驅(qū)動(dòng)橋或傳統(tǒng)的運(yùn)動(dòng),提高輪胎的后輪離開(kāi)地面。把傳輸在公園(自動(dòng))或低(手動(dòng)),并試圖把一個(gè)驅(qū)動(dòng)輪的手。如果驅(qū)動(dòng)軸是一個(gè)limited-slip類(lèi)型,它將是十分困難的(或者不可能)把輪子。如果驅(qū)動(dòng)軸是常規(guī)的(打開(kāi))類(lèi)型,輪子就會(huì)轉(zhuǎn)動(dòng)容易,和對(duì)方輪會(huì)旋轉(zhuǎn)相反的方向來(lái)的。
在中立的地方,再旋轉(zhuǎn)傳輸后輪。如果軸是一個(gè)limited-slip類(lèi)型,相反的摩天輪將在同一方向旋轉(zhuǎn)。如果軸是一種傳統(tǒng)的類(lèi)型,相反的輪子會(huì)旋轉(zhuǎn)相反的方向,如果它旋轉(zhuǎn)。
齒輪傳動(dòng)比
看到如圖4
圖4
一輛汽車(chē)的驅(qū)動(dòng)橋據(jù)說(shuō)有一定的軸的比例。這個(gè)號(hào)碼(通常是一個(gè)完整的數(shù)和一個(gè)十進(jìn)制的分?jǐn)?shù))實(shí)際上是一個(gè)比較的數(shù)量在環(huán)形齒輪輪齒與小齒輪。例如,一個(gè)4.11后方意味著從理論上講,有4.11牙齒咬住了環(huán)形齒輪為每顆牙齒在小齒輪或,用另一種方式來(lái)說(shuō),傳動(dòng)軸上必須把4.11次轉(zhuǎn)動(dòng)輪胎一次。實(shí)際上,第4.11比率,或許有37顆牙上環(huán)形齒輪和9顆牙上小齒輪。所劃分的齒數(shù)小齒輪的齒數(shù)成環(huán)形齒輪,數(shù)值軸比的表達(dá)式。這也提供了一種良好方法軸比值的確定到底是哪一個(gè)是處理。
另一種方法來(lái)確定齒輪傳動(dòng)比是杰克和支持,使雙方的車(chē)輛驅(qū)動(dòng)輪是離地面。做一個(gè)粉筆痕跡的驅(qū)動(dòng)輪、傳動(dòng)軸上。把傳輸在中立的。把輪子轉(zhuǎn),數(shù)一數(shù)這些形成的一個(gè)完整的圈數(shù),使傳動(dòng)軸上/半軸。轉(zhuǎn)動(dòng)的圈數(shù),這使得在一個(gè)完整的革命尚未開(kāi)化出來(lái)的驅(qū)動(dòng)輪接近軸的比例。
如圖4數(shù)值比汽車(chē)車(chē)橋的數(shù)目的牙齒咬住了環(huán)形齒輪除以牙齒的數(shù)目小齒輪。
收藏