2018中考數(shù)學(xué)復(fù)習(xí) 第22課時(shí) 平行四邊形與多邊形測試
《2018中考數(shù)學(xué)復(fù)習(xí) 第22課時(shí) 平行四邊形與多邊形測試》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018中考數(shù)學(xué)復(fù)習(xí) 第22課時(shí) 平行四邊形與多邊形測試(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第五單元 四邊形 第二十二課時(shí) 平行四邊形與多邊形 基礎(chǔ)達(dá)標(biāo)訓(xùn)練 1. (2017臨沂)一個(gè)多邊形的內(nèi)角和是外角和的2倍,這個(gè)多邊形是( ) A. 四邊形 B. 五邊形 C. 六邊形 D. 八邊形 2. (2017湘西州)如圖,在?ABCD中,AC、BD相交于點(diǎn)O,則下列結(jié)論中錯(cuò)誤的是( ) A. OA=OC B. ∠ABC=∠ADC C. AB=CD D. AC=BD 第2題圖 第3題圖 3. (2017麓山國際實(shí)驗(yàn)學(xué)校二模)小敏不慎將一塊平行四邊形玻璃打碎成如圖的四塊,為了能在商店配到一塊與原來相同的平行四邊形玻璃,他帶了兩塊碎玻璃,其編號應(yīng)該
2、是( ) A. ①② B. ①④ C. ③④ D. ②③ 4. (2017蘇州)如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數(shù)為( ) A. 30° B. 36° C. 54° D. 72° ,第4題圖) ,第5題圖) 5. (2017麗水)如圖,在?ABCD中,連接AC,∠ABC=∠CAD=45°,AB=2,則BC的長是( ) A. B. 2 C. 2 D. 4 6. (2017眉山)如圖,EF過?ABCD對角線的交點(diǎn)O,交AD于E,交BC于F.若?ABCD的周長為18,OE=1.5,則四邊形EFCD的周長為( ) A. 14
3、 B. 13 C. 12 D. 10 ,第6題圖) ,第7題圖) 7. (2017青島)如圖,?ABCD的對角線AC與BD相交于點(diǎn)O,AE⊥BC,垂足為E,AB=,AC=2,BD=4,則AE的長為( ) A. B. C. D. 第8題圖 8. (2017孝感)如圖,六邊形ABCDEF的內(nèi)角都相等,∠DAB=60°,AB=DE.則下列結(jié)論成立的個(gè)數(shù)是( ) ①AB∥DE;②EF∥AD∥BC;③AF=CD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形. A. 2 B. 3 C. 4 D. 5 9. (2017
4、廣東省卷)一個(gè)n邊形的內(nèi)角和是720°,那么n=________. 10. (2017武漢)如圖,在?ABCD中,∠D=100°,∠DAB的角平分線AE交DC于點(diǎn)E,連接BE,若AE=AB,則∠EBC的度數(shù)為________. ,第10題圖) ,第11題圖) 11. (2017寧夏)如圖,將平行四邊形ABCD沿對角線BD折疊,使點(diǎn)A落在點(diǎn)A′處,若∠1=∠2=50°,則∠A′為________. 12. (2017連云港)如圖,在?ABCD中,AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,若∠EAF=56°,則∠B=________. ,第12題圖) ,第13題圖) 13. (人教八下P5
5、1第12題改編)如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°,則四邊形ABCD的面積是________. 14. (8分)(2017菏澤)如圖,E是?ABCD的邊AD的中點(diǎn),連接CE并延長交BA的延長線于F,若CD=6,求BF的長. ,第14題圖) 15. (8分)(2017樂山)如圖,延長?ABCD的邊AD到點(diǎn)F,使DF=DC,延長CB到點(diǎn)E,使BE=BA,分別連接點(diǎn)A、E和點(diǎn)C、F. 求證:AE=CF. ,第15題圖) 16. (8分)已知:如圖,在四邊形ABCD中,AB∥CD,E是BC的中點(diǎn),直線AE交DC的延長線于點(diǎn)F.試判斷四邊形AB
6、FC的形狀,并證明你的結(jié)論. 第16題圖 17. (9分)(2017咸寧)如圖,點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,BE=FC. (1)求證:△ABC≌△DFE; (2)連接AF,BD,求證:四邊形ABDF是平行四邊形. 第17題圖 18. (9分)(2017攀枝花)如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E、F,AE、CF分別與BD交于點(diǎn)G和H,且AB=2. (1)若tan∠ABE=2,求CF的長; (2)求證:BG=DH. 第18題圖 能力提升訓(xùn)練 1. (2017威海)如圖,在?ABCD中,∠DAB的平分線交CD于點(diǎn)E
7、,交BC的延長線于點(diǎn)G,∠ABC的平分線交CD于點(diǎn)F,交AD的延長線于點(diǎn)H,AG與BH交于點(diǎn)O,連接BE.下列結(jié)論錯(cuò)誤的是( ) A. BO=OH B. DF=CE C. DH=CG D. AB=AE ,第1題圖) ,第2題圖) 2. (2017泰安)如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上的一點(diǎn),且BC=EC,CF⊥BE交AB于點(diǎn)F,P是EB延長線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC. 其中正確結(jié)論的個(gè)數(shù)為( ) A.1 B.2 C.3 D.4 3. (2017長沙希望杯初賽)在△ABC中,點(diǎn)D在BC上,點(diǎn)
8、F在AC上,點(diǎn)E在AB上,四邊形FDEA是平行四邊形,且AB=AC=BC,則△ABC與四邊形FDEA的周長之比是________. ,第3題圖) ,第4題圖) 4. (2017長沙中考模擬卷一)如圖,在?ABCD中,對角線AC與BD相交于點(diǎn)O,點(diǎn)E、F分別是邊AD、AB的中點(diǎn),EF交AC于點(diǎn)H,則的值為________. 第5題圖 5. (2017南充)如圖,在?ABCD中,過對角線BD上一點(diǎn)P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,則S?AEPH=________ 6. (9分)(2017泰安)如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是
9、AB的中點(diǎn),F(xiàn)是AC延長線上的一點(diǎn). (1)若ED⊥EF,求證:ED=EF; (2)在(1)的條件下,若DC的延長線與FB交于點(diǎn)P,試判定四邊形ACPE是否為平行四邊形?并證明你的結(jié)論(請先補(bǔ)全圖形,再解答); (3)若ED=EF,ED與EF垂直嗎?若垂直給出證明,若不垂直說明理由. 第6題圖 拓展培優(yōu)訓(xùn)練 1. (10分)如圖,在?ABCD中,P1、P2、P3…Pn-1是BD的n等分點(diǎn),連接AP2,并延長交BC于點(diǎn)E,連接APn-2并延長交CD于點(diǎn)F,連接EF. (1)求證:EF∥BD; (2)設(shè)?ABCD的面積是S,若S△AEF=S,求n的值. 答案 1. C 2.
10、 D 3. D 4. B 5. C 【解析】∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠ACB=∠CAD,又∵∠ABC=∠CAD=45°,∴∠ACB=∠ABC=45°,∴∠BAC=180°-45°-45°=90°,AB=AC,在Rt△ABC中,AB=AC=2,∴BC===2. 6. C 【解析】∵四邊形ABCD是平行四邊形,∴OA=OC,AD∥BC,∴∠DAC=∠ACB,在△OAE和△OCF中,,∴△OAE≌△OCF(ASA),∴CF=AE,OE=OF,∵OE=1.5,∴EF=2OE=3,∵?ABCD的周長為18,∴AD+DC=9,∴四邊形EFCD的周長=DE+EF+CF+CD=DE
11、+AE+CD+EF=AD+CD+EF=9+3=12. 7. D 【解析】∵四邊形ABCD是平行四邊形,且AC=2,BD=4,∴AO=OC=1,BO=OD=2,又∵AB=,∴AB2+AO2=BO2,∴∠BAO=90°,在Rt△BAC中,BC===,∵S△ABC=AB·AC=BC·AE,∴AE===. 第8題解圖 8. D 【解析】如解圖,連接DF、AC,∵內(nèi)角都相等,∴六邊形ABCDEF是正六邊形,∴每個(gè)內(nèi)角為120°,又∵∠DAB=60°,∴∠FAD=60°,根據(jù)四邊形的內(nèi)角和為360°,可知∠EDA=60°,故AB∥DE, ①正確;∵六邊形的內(nèi)角都相等,則∠EFA=∠FAB=1
12、20°,又∵∠DAB=60°,∴∠FAD=60°,∴∠EFA+∠FAD=180°,∴EF∥AD,同理,BC∥AD,即EF∥AD∥BC, ②正確;∵六邊形ABCDEF是正六邊形,∴AF=CD,③正確;∵∠E=∠B,AB=BC=DE=EF,∴△ABC≌△DEF(SAS),∴AC=DF,∵AF=DC,∴四邊形ACDF是平行四邊形,④正確;正六邊形ABCDEF既是中心對稱圖形,也是軸對稱圖形,⑤正確. 9. 6 【解析】∵180°·(n-2)=720°,∴n=6. 10. 30° 【解析】∵在?ABCD中,∠D=100°,AB∥DC,AD∥BC,∴∠ABC=∠D=100°,∴∠DAB=180°-∠
13、D=80°, ∵AE平分∠DAB,∴∠AED=∠BAE=∠DAE=40°,又∵AE=AB,∴在等腰三角形ABE中,∠ABE=70°,∴∠EBC=∠ABC-∠ABE=30°. 11. 105° 【解析】由折疊的性質(zhì)知:∠2=∠DBA′=50°,∠ADB=∠BDA′,∵AD∥BC,∴∠ADB=∠DBG,∴∠BDG=∠DBG,又∵∠1=∠BDG+∠DBG,∠1=∠2=50°,∴∠BDG=25°,根據(jù)三角形的內(nèi)角和為180°,∴在△DBA′中,∠A ′=180°-50°-25°=105°. 12. 56° 【解析】在四邊形AECF中,有兩個(gè)內(nèi)角是直角,根據(jù)“四邊形內(nèi)角和等于360°”得∠EAF+∠
14、C=180°,又∵四邊形ABCD是平行四邊形,∴∠B+∠C=180°,∴∠B=∠EAF=56°. 13. 120 【解析】在△AOD中,∠ADB=90°,AD=12,OD=5,根據(jù)勾股定理得OA2=OD2+AD2=52+122=169,解得OA=13,又∵AC=26,∴OC=13,∴OA=OC,又∵OD=OB,∴四邊形ABCD是平行四邊形,又∵∠ADB=90°,即AD⊥BD,∴S四邊形ABCD=AD·BD=12×(5+5)=120. 14. 解:∵四邊形ABCD是平行四邊形,CD=6, ∴AD∥BC,AB=CD=6, ∵E為AD的中點(diǎn), ∴AE=AD=BC, ∴AE為△CBF的中位
15、線, ∴A為BF的中點(diǎn), ∴BF=2AB=12. 15. 證明:在?ABCD中,AB=CD,AD=BC,AD∥BC, ∵AB=BE,CD=DF, ∴BE=DF, 又∵AF=AD+DF,EC=EB+BC, ∴AF=EC, 又∵AF∥EC, ∴四邊形AECF是平行四邊形, ∴AE=CF. 16. 解:四邊形ABFC是平行四邊形. 證明如下:∵CD∥AB, ∴∠CFE=∠BAE,∠FCE=∠ABE, ∵E是BC的中點(diǎn), ∴CE=BE, ∴△CFE≌△BAE(AAS), ∴EF=AE, ∴四邊形ABFC是平行四邊形. 17. 證明:(1)∵BE=FC, ∴BE+
16、EC=EC+CF, ∴BC=FE, 在△ABC和△DFE中, , ∴△ABC≌△DFE(SSS); (2)連接AF,BD, 第17題解圖 由(1)知△ABC≌△DFE, ∴∠ABC=∠DFE, ∴AB∥DF, 又∵AB=DF, ∴四邊形ABDF是平行四邊形. 18. (1)解:∵在Rt△ABE中,tan∠ABE==2, ∴AE=2BE, 又∵AE2+BE2=AB2, ∴(2BE)2+BE2=(2)2, 解得BE=2, ∴AE=4, 又∵四邊形ABCD是平行四邊形, ∴AF∥EC, 又∵AE⊥BC,CF⊥AD, ∴AE∥CF, ∴四邊形AECF
17、是平行四邊形, ∴CF=AE=4; (2)證明:∵四邊形ABCD是平行四邊形, ∴AD=BC且AD∥BC,∠FDB=∠EBD, 由(1)可知四邊形AECF是平行四邊形, ∴EC=AF,∠AEC=∠AFC, 又∵BE+EC=BC,F(xiàn)D+AF=AD, ∴BE=FD, 又∵∠AEB=∠CFD,即∠GEB=∠HFD, ∴在△GEB和△HFD中, , ∴△GEB≌△HFD(ASA), ∴BG=DH. 能力提升訓(xùn)練 1. D 【解析】∵AH∥CG,∴∠H=∠HBG,∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB,同理AB=BG,AD=DE,BC=CF,∵AD=BC,∴DE
18、=CF,∴DF=CE,故B正確;∵AD=BC,∴DH=CG,故C正確;∵AH=AB,AO平分∠HAB,∴BO=HO,故A正確. 2. D 【解析】∵四邊形ABCD是平行四邊形,∴CD∥AB,∴∠CEB=∠ABE,∵CE=BC,∴∠CEB=∠CBE,∴∠CBE=∠ABE,∴BE平分∠CBF,故①正確;設(shè)CF交BE于O,∵CE=CB,CF⊥BE于O,∴∠COE=∠COB,∵OC=OC,∴Rt△CEO≌Rt△CBO,∴∠ECO=∠BCO,∴CF平分∠DCB,故②正確;∵CE∥BF,∴∠CFB=∠ECF,∴∠CFB=∠BCF,∴BF=BC,故③正確;∵BF=BC,BO⊥CF,∴直線BO是線段CF的垂
19、直平分線,∵點(diǎn)P在OB上,∴PF=PC,故④正確,綜上,正確結(jié)論的個(gè)數(shù)共4個(gè). 3. 【解析】∵四邊形FDEA是平行四邊形,∴AE∥DF,∴AB∥DF,∴∠B=∠FDC,又∵AB=AC,∴∠B=∠C,∴∠C=∠FDC,∴FD=FC,同理可證∠B=∠EDB,∴EB=ED,∴四邊形FDEA的周長為AE+ED+DF+AF=AE+EB+FC+AF=AB+AC,四邊形FDEA周長為AC+AB兩條線段長,設(shè)BC=2a,則△ABC周長為8a,四邊形FDEA周長為6a,∴△ABC與四邊形FDEA的周長之比為=. 4. 【解析】∵四邊形ABCD是平行四邊形,∴OA=OC,∵點(diǎn)E、F分別是邊AD、AB的中
20、點(diǎn),∴EF∥BD,∴△AFH∽△ABO,∴=,∴AH=AO,∴AH=AC,HC=AC,∴=. 5. 4 【解析】∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,又∵EF∥BC,GH∥AB,∴四邊形BEPG、四邊形GPFC、四邊形PHDF、四邊形AEPH都是平行四邊形,∵BD是平行四邊形ABCD、平行四邊形BEPG、平行四邊形PHDF的對角線,平行四邊形的對角線將平行四邊形分成兩個(gè)全等的三角形,∴S△ABD=S△CBD,S△PHD=S△PFD,S△BPG=S△BEP,S?AEPH=S?GPFC,又∵CG=2BG,∴S?GPFC=2S?BGPE=4S△BPG=4,∴S?AEPH=4.
21、6. (1)證明:在?ABCD中,AD=BC, AD∥BC, ∵AD=AC,AD⊥AC, ∴AC=BC,AC⊥BC, 如解圖,連接CE, ∵E為AB中點(diǎn), 第6題解圖 ∴AE=EC, ∴∠ACE=∠BCE=45°, ∴∠DAE=∠ECF=135°, 又∵∠AED+∠CED=90°,∠CEF+∠CED=90°, ∴∠AED=∠CEF, ∴△AED≌△CEF(ASA), ∴ED=EF; (2)解:補(bǔ)全圖形如解圖,四邊形ACPE是平行四邊形.證明如下: ∵△AED≌△CEF, ∴AD=CF, ∴AC=CF, 又∵CP∥AE, ∴CP為△FAB的中位線, ∴
22、CP=AE, ∴四邊形ACPE是平行四邊形; (3)解:ED⊥EF.證明如下: 過點(diǎn)E作EH⊥AF于點(diǎn)H,延長PE作EG⊥DA交DA延長線于點(diǎn)G, ∵AE=EC, ∠EAG=∠HCE=45°, ∴△AGE≌△CHE(AAS), ∴EG=EH, 又∵ED=EF, ∴Rt△DEG≌Rt△FEH(HL), ∴∠ADE=∠CFE, ∴∠DEA=∠FEC, ∴∠DEA+∠DEC=∠FEC+∠DEC=90°, ∴∠DEF=90°, ∴ED⊥EF. 拓展培優(yōu)訓(xùn)練 1. (1)證明:∵AD∥BC,AB∥DC, ∴△Pn-2FD∽△Pn-2AB,△P2BE∽△P2DA, ∴==,==, ∴=, ∴EF∥BD; (2)解:由(1)可知=, ∴S△AFD=S,同理可得S△ABE=S, ∵=, ∴==1-=, ∴S△ECF=()2S, ∵S△AEF=S, ∴S=S-2×·S-()2·S,即1--=,解得n=6. 14
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案