高考數(shù)學(xué)總復(fù)習(xí) 第4章 第2節(jié) 平面向量的基本定理及坐標(biāo)表示課件 新人教A版

上傳人:痛*** 文檔編號(hào):65932705 上傳時(shí)間:2022-03-25 格式:PPT 頁數(shù):44 大?。?.49MB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué)總復(fù)習(xí) 第4章 第2節(jié) 平面向量的基本定理及坐標(biāo)表示課件 新人教A版_第1頁
第1頁 / 共44頁
高考數(shù)學(xué)總復(fù)習(xí) 第4章 第2節(jié) 平面向量的基本定理及坐標(biāo)表示課件 新人教A版_第2頁
第2頁 / 共44頁
高考數(shù)學(xué)總復(fù)習(xí) 第4章 第2節(jié) 平面向量的基本定理及坐標(biāo)表示課件 新人教A版_第3頁
第3頁 / 共44頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)總復(fù)習(xí) 第4章 第2節(jié) 平面向量的基本定理及坐標(biāo)表示課件 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)總復(fù)習(xí) 第4章 第2節(jié) 平面向量的基本定理及坐標(biāo)表示課件 新人教A版(44頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第二節(jié)平面向量的基本定理及坐標(biāo)表示1理解平面向量的基本定理及其意義2掌握平面向量的正交分解及其坐標(biāo)表示3會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算4理解用坐標(biāo)表示的平面向量共線的條件一、兩個(gè)向量的夾角定義范圍已知兩個(gè) 向量a,b,作 ,則AOB叫做向量a與b的夾角(如圖)向量夾角的范圍是 ,當(dāng) 時(shí),兩向量共線,當(dāng) 時(shí),兩向量垂直,記作ab.非零0或0,二、平面向量基本定理及坐標(biāo)表示1平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個(gè) 向量,那么對(duì)于這一平面內(nèi)的任意向量a, 一對(duì)實(shí)數(shù)1,2,使a .其中,不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組 不共線有且只有基底1e12e22

2、平面向量的正交分解把一個(gè)向量分解為兩個(gè) 的向量,叫做把向量正交分解3平面向量的坐標(biāo)表示(1)在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量i,j作為基底,對(duì)于平面內(nèi)的一個(gè)向量a,有且只有一對(duì)實(shí)數(shù)x,y,使axiyi,把有序數(shù)對(duì) 叫做向量a的坐標(biāo),記作a ,其中 叫做a在x軸上的坐標(biāo), 叫做a在y軸上的坐標(biāo)互相垂直(x,y)(x,y)xy(x,y)點(diǎn)A1向量的坐標(biāo)與點(diǎn)的坐標(biāo)有何不同?三、平面向量的坐標(biāo)運(yùn)算1加法、減法、數(shù)乘運(yùn)算向量abababa坐標(biāo)(x1,y1)(x2,y2)(x1x2,y1y2)(x1x2,y1y2)(x1,y1)(x2x1,y2y1) 始終3平面向量共線的坐標(biāo)表

3、示設(shè)a(x1,y1),b(x2,y2),其中b0,則a與b共線ab .x1y2x2y10答案:B2設(shè)向量a(1,3),b(2,4),c(1,2)若表示向量4a、4b2c、2(ac)、d的有向線段首尾相接能構(gòu)成四邊形,則向量d為()A(2,6) B(2,6)C(2,6) D(2,6)解析:由題知4a(4,12),4b2c(6,20),2(ac)(4,2),由題意知:4a4b2c2(ac)d0,則(4,12)(6,20)(4,2)d0,即(2,6)d0,故d(2,6),選D.答案:D答案:B4在平面直角坐標(biāo)系xOy中,四邊形ABCD的邊ABDC,ADBC.已知A(2,0),B(6,8),C(8,6

4、),則D點(diǎn)的坐標(biāo)為_答案:(0,2)答案:01.以平面內(nèi)任意兩個(gè)不共線的向量為一組基底,該平面內(nèi)的任意一個(gè)向量都可表示成這組基底的線性組合,基底不同,表示也不同2對(duì)于兩個(gè)向量a,b,將它們用同一組基底表示,我們可通過分析這兩個(gè)表示式的關(guān)系,來反映a,b.3利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或進(jìn)行數(shù)乘運(yùn)算【特別提醒】(1)由于基底向量不共線,所以0不能作為一個(gè)基底向量(2)基底一旦確定,則定向量沿基底的分解是唯一的1.向量的坐標(biāo)運(yùn)算主要是利用向量加減、數(shù)乘運(yùn)算的法則進(jìn)行,若已知有向線段兩端點(diǎn)的坐標(biāo),則應(yīng)先求向量的坐標(biāo)2解題過程中,常利用向量相等,則

5、其坐標(biāo)相同這一原則,通過列方程(組)來進(jìn)行,并注意方程思想的應(yīng)用3向量的坐標(biāo)運(yùn)算,使得向量的線性運(yùn)算都可用坐標(biāo)來進(jìn)行,實(shí)現(xiàn)了向量運(yùn)算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來,就可以使很多幾何問題的解答轉(zhuǎn)化為我們熟知的數(shù)量運(yùn)算【思路點(diǎn)撥】利用向量的坐標(biāo)運(yùn)算及向量的坐標(biāo)與其起點(diǎn)、終點(diǎn)坐標(biāo)的關(guān)系求解ab的充要條件有兩種表達(dá)形式:(1)ab(b0)ab(R);(2)設(shè)a(x1,y1),b(x2,y2),則abx1y2x2y10.兩種充要條件的表達(dá)形式不同,第(1)種是用線性關(guān)系的形式表示的,而且有前提條件b0.而第(2)種是用坐標(biāo)形式表示的,且沒有b0的限制【思路點(diǎn)撥】(1)由兩向量相等的充要條件可求得實(shí)數(shù)m

6、、n的值;(2)由兩向量平行的充要條件列出關(guān)于k的方程,進(jìn)而求得k的值;(3)由兩向量平行及向量的模列方程組求解【活學(xué)活用】 3.已知a(3,2),b(1,2),c(4,1)(1)求滿足axbyc的實(shí)數(shù)x,y的值;(2)若(akc)(2ba),求實(shí)數(shù)k的值錯(cuò)源:忽視平面向量基本定理的使用條件致誤【糾錯(cuò)】本題可以根據(jù)向量共線的充要條件列出等式解決,但在得出等式后根據(jù)平面向量基本定理列式解決時(shí),容易忽視平面向量基本定理的使用條件,出現(xiàn)漏解,漏掉了當(dāng)a,b共線時(shí),t可為任意實(shí)數(shù)這個(gè)解【心得】如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)該平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)1、2,使a1e12e2,特別地,當(dāng)a0時(shí),120,本題在a,b不共線時(shí),就是根據(jù)這個(gè)定理得出的方程組在平面向量的知識(shí)體系里,平面向量基本定理是基石,共線向量定理是重要工具,在學(xué)習(xí)這部分內(nèi)容時(shí)要充分注意這兩個(gè)定理在解決問題中的作用,在使用平面向量基本定理時(shí)要注意其使用條件是兩個(gè)基向量不共線

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!