《人教版高中數(shù)學(xué)選修11:2.1 橢 圓 課時(shí)提升作業(yè)九 2.1.1 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《人教版高中數(shù)學(xué)選修11:2.1 橢 圓 課時(shí)提升作業(yè)九 2.1.1 Word版含解析(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)提升作業(yè)(九)
橢圓及其標(biāo)準(zhǔn)方程
(25分鐘 60分)
一、選擇題(每小題5分,共25分)
1.a=6,c=1的橢圓的標(biāo)準(zhǔn)方程是 ( )
A.+=1 B.+=1
C.+=1 D.以上都不對
【解析】選D.由a=6,c=1,所以b2=a2-c2=35,
當(dāng)焦點(diǎn)在x軸上時(shí),方程為+=1;
當(dāng)焦點(diǎn)在y軸上時(shí),方程為+=1.
2.已知F1,F2是定點(diǎn),|F1F2|=8,動點(diǎn)M滿足|MF1|+|MF2|=8,則動點(diǎn)M的軌跡
是 ( )
A.橢圓 B.直線
C.圓 D.線段
【解析】選D.因?yàn)閨MF1|+|MF2
2、|=8=|F1F2|,
所以點(diǎn)M的軌跡是線段F1F2.
3.(2015·漳州高二檢測)如果方程+=1表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)a的取值范圍是 ( )
A.a>3 B.a<-2 C.a>3或a<-2 D.a>3或-63或-60導(dǎo)致錯(cuò)誤.
4.已知橢圓+=1上的點(diǎn)M到該橢圓一個(gè)焦點(diǎn)F的距離為2,N是MF的中點(diǎn),O為坐標(biāo)原點(diǎn),那么線段ON的長是 ( )
A.2 B.4 C.8 D.
【解題指南】借助三角形中位線的性質(zhì)求解.
【解析】
3、選B.設(shè)橢圓的另一個(gè)焦點(diǎn)為E,如圖,
則|MF|+|ME|=10,
所以|ME|=8.
又ON為△MEF的中位線,
所以|ON|=|ME|=4.
5.(2015·荊州高二檢測)已知橢圓的兩焦點(diǎn)為F1(-2,0),F2(2,0),P為橢圓上的一點(diǎn),且|F1F2|是|PF1|與|PF2|的等差中項(xiàng).該橢圓的方程是 ( )
A.+=1 B.+=1
C.+=1 D.+=1
【解析】選B.因?yàn)閨PF1|+|PF2|=2|F1F2|=2×4=8,
所以2a=8,所以a=4,
所以b2=a2-c2=16-4=12,
所以橢圓方程是+=1.
二、填空題(每小題5分,共
4、15分)
6.已知a=4,b=3,橢圓焦點(diǎn)在x軸上,則橢圓的標(biāo)準(zhǔn)方程為 .
【解析】由題意可知,橢圓的標(biāo)準(zhǔn)方程為+=1.
答案:+=1
7.(2015·廣東高考改編)已知橢圓+=1(m>0)的左焦點(diǎn)為F1(-4,0),則m= .
【解題指南】本題考查了橢圓的幾何性質(zhì),根據(jù)焦點(diǎn)在x軸上,判斷出m2<25,進(jìn)而根據(jù)焦點(diǎn)坐標(biāo),a2的值及m>0求得m.
【解析】由題意得:m2=25-42=9,
因?yàn)閙>0,所以m=3.
答案:3
8.已知A(0,-1),B(0,1)兩點(diǎn),△ABC的周長為6,則△ABC的頂點(diǎn)C的軌跡方程是 .
【解析】因?yàn)?c=|AB|=2,所
5、以c=1,
所以|CA|+|CB|=6-2=4=2a,
所以頂點(diǎn)C的軌跡是以A,B為焦點(diǎn)的橢圓(A,B,C不共線).
因此,頂點(diǎn)C的軌跡方程為+=1(y≠±2).
答案:+=1(y≠±2)
【誤區(qū)警示】本題在求解時(shí),常因?yàn)楹雎訟,B,C不共線導(dǎo)致增解.
三、解答題(每小題10分,共20分)
9.(2015·臨沂高二檢測)設(shè)P是橢圓+=1上一點(diǎn),F1,F2是橢圓的焦點(diǎn),若
∠F1PF2=60°,求△F1PF2的面積.
【解析】由橢圓方程知,a2=25,b2=,
所以c2=,所以c=,2c=5.
在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|P
6、F2|cos60°,
即25=|PF1|2+|PF2|2-|PF1|·|PF2|.?、?
由橢圓的定義得10=|PF1|+|PF2|,
即100=|PF1|2+|PF2|2+2|PF1|·|PF2|.?、?
②-①,得3|PF1|·|PF2|=75,
所以|PF1|·|PF2|=25,
所以=|PF1|·|PF2|·sin60°=.
10.已知?jiǎng)訄AM過定點(diǎn)A(-3,0),并且內(nèi)切于定圓B:(x-3)2+y2=64.求動圓圓心M的軌跡方程.
【解析】設(shè)動圓M的半徑為r,
則|MA|=r,|MB|=8-r,
所以|MA|+|MB|=8,且8>|AB|=6,
所以動點(diǎn)M的軌跡是橢圓
7、,且焦點(diǎn)分別是A(-3,0),B(3,0),且2a=8,
所以a=4,c=3,
所以b2=a2-c2=16-9=7.
所求動圓圓心M的軌跡方程是+=1.
(20分鐘 40分)
一、選擇題(每小題5分,共10分)
1.(2015·重慶高二檢測)設(shè)F1,F2是橢圓+=1的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且|PF1|∶|PF2|=2∶1,則△PF1F2的面積等于 ( )
A.5 B.4 C.3 D.1
【解析】選B.由橢圓的標(biāo)準(zhǔn)方程得a=3,b=2,c=,
所以|PF1|+|PF2|=6.
又|PF1|∶|PF2|=2∶1,
所以|PF1|=4,|PF2|=2,
所以
8、△F1PF2為直角三角形,
所以=×2×4=4.
2.已知橢圓+=1的左、右焦點(diǎn)分別為F1,F2,點(diǎn)P在橢圓上.若P,F1,F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到x軸的距離為 ( )
A. B.3 C. D.
【解析】選D.由題意,a2=16,b2=9,所以c2=7,c=.
因?yàn)椤鱌F1F2為直角三角形.且b=3>=c.
所以F1或F2為直角三角形的直角頂點(diǎn),
所以點(diǎn)P的橫坐標(biāo)為±,
設(shè)P(±,|y|),把x=±代入橢圓方程,知+=1,所以y2=,所以|y|=.
二、填空題(每小題5分,共10分)
3.(2015·山師附中高二檢測)已知方程+=1表示焦點(diǎn)在
9、y軸上的橢圓,則m的取值范圍是 .
【解題指南】解答本題應(yīng)注意,方程表示橢圓,分母應(yīng)取正值,焦點(diǎn)在y軸上,含y2項(xiàng)的分母較大,二者缺一不可.
【解析】由題意得
即
所以1
10、-16=9.又因?yàn)辄c(diǎn)A,B,C不共線,
所以點(diǎn)C的軌跡方程為+=1(y≠0).
答案:+=1(y≠0)
【誤區(qū)警示】本題解答常因忽略了隱含條件——點(diǎn)A,B,C不共線導(dǎo)致忘記對x或y加以限制.
三、解答題(每小題10分,共20分)
5.(2015·安陽高二檢測)已知點(diǎn)P(6,8)是橢圓+=1(a>b>0)上一點(diǎn),F1(-c,0),F2(c,0)為橢圓的兩焦點(diǎn),若·=0.試求
(1)橢圓的方程.
(2)sin∠PF1F2的值.
【解析】(1)因?yàn)椤?0,
所以-(c+6)(c-6)+64=0,所以c=10,
所以F1(-10,0),F2(10,0),
所以2a=|PF1|+|
11、PF2|
=+=12,
所以a=6,b2=80.
所以橢圓方程為+=1.
(2)因?yàn)镻F1⊥PF2,
所以=|PF1|·|PF2|=|F1F2|·yP=80,所以|PF1|·|PF2|=160,
又|PF1|+|PF2|=12,且點(diǎn)P(6,8)在第一象限內(nèi),
所以|PF2|=4,
所以sin∠PF1F2===.
6.(2015·東莞高二檢測)在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動點(diǎn),且直線AP與BP的斜率之積等于-.
(1)求動點(diǎn)P的軌跡方程.
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P,使得△PAB與△PMN的面
12、積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【解析】(1)因?yàn)辄c(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,
所以點(diǎn)B的坐標(biāo)為(1,-1).
設(shè)點(diǎn)P的坐標(biāo)為(x,y),
由題意得·=-,
化簡得x2+3y2=4(x≠±1).
故動點(diǎn)P的軌跡方程為x2+3y2=4(x≠±1).
(2)方法一:設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),點(diǎn)M,N的坐標(biāo)分別為(3,yM),(3,yN),
則直線AP的方程為y-1=(x+1),
直線BP的方程為y+1=(x-1),
令x=3得yM=,yN=.
于是△PMN的面積
S△PMN=|yM-yN|(3-x0)=,
又直線AB的方程為x+y=0
13、,|AB|=2,
點(diǎn)P到直線AB的距離d=.
于是△PAB的面積S△PAB=|AB|·d=|x0+y0|,
當(dāng)S△PAB=S△PMN時(shí),得|x0+y0|=,
又|x0+y0|≠0,
所以(3-x0)2=|-1|,解得x0=.
因?yàn)?3=4,所以y0=±.
故存在點(diǎn)P使得△PAB與△PMN的面積相等,此時(shí)點(diǎn)P的坐標(biāo)為.
方法二:若存在點(diǎn)P使得△PAB與△PMN的面積相等,
設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),
則|PA|·|PB|sin∠APB=|PM|·|PN|sin∠MPN.
因?yàn)閟in∠APB=sin∠MPN,
所以=,
所以=,
即(3-x0)2=|-1|,解得x0
14、=.
因?yàn)?3=4,所以y0=±,
故存在點(diǎn)P使得△PAB與△PMN的面積相等,此時(shí)點(diǎn)P的坐標(biāo)為.
【補(bǔ)償訓(xùn)練】在Rt△ABC中,∠CAB=90°,AB=2,AC=,曲線E過C點(diǎn),動點(diǎn)P在E上運(yùn)動,且保持|PA|+|PB|的值不變,求曲線E的方程.
【解析】如圖所示,以AB所在直線為x軸,線段AB的垂直平分線為y軸,建立直角坐標(biāo)系.
在Rt△ABC中,
BC==,
因?yàn)閨PA|+|PB|=|CA|+|CB|=+=2.
又|PA|+|PB|>|AB|,
所以由橢圓定義知,動點(diǎn)P的軌跡E為橢圓,a=,c=1,b=1.
所以所求的軌跡方程為+y2=1.
關(guān)閉Word文檔返回原板塊