2019年高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:第二部分 數(shù)列的求和及綜合應(yīng)用

上傳人:xinsh****encai 文檔編號:27440705 上傳時間:2021-08-18 格式:PPT 頁數(shù):45 大?。?79.50KB
收藏 版權(quán)申訴 舉報 下載
2019年高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:第二部分 數(shù)列的求和及綜合應(yīng)用_第1頁
第1頁 / 共45頁
2019年高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:第二部分 數(shù)列的求和及綜合應(yīng)用_第2頁
第2頁 / 共45頁
2019年高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:第二部分 數(shù)列的求和及綜合應(yīng)用_第3頁
第3頁 / 共45頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019年高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:第二部分 數(shù)列的求和及綜合應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:第二部分 數(shù)列的求和及綜合應(yīng)用(45頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題三 數(shù) 列 第 2 講 數(shù)列的求和及綜合應(yīng)用 1 (2017 全國卷 ) 設(shè)數(shù)列 a n 滿足 a 1 3 a 2 (2 n 1) a n 2 n . (1) 求 a n 的通項公式; (2) 求數(shù)列 a n 2 n 1 的前 n 項和 解: (1) 因為 a 1 3 a 2 (2 n 1) a n 2 n , 故當(dāng) n 2 時, a 1 3 a 2 (2 n 3) a n 1 2( n 1) , 得 (2 n 1) a n 2 ,所以 a n 2 2 n 1 , 又 n 1 時, a 1 2 適合上式, 從而 a n 的通項公式為 a n 2 2 n 1 . (2) 記 a n 2 n

2、1 的前 n 項和為 S n , 由 (1) 知 a n 2 n 1 2 ( 2 n 1 )( 2 n 1 ) 1 2 n 1 1 2 n 1 , 則 S n 1 1 3 1 3 1 5 1 2 n 1 1 2 n 1 1 1 2 n 1 2 n 2 n 1 . 2 (2017 山東卷 ) 已知 a n 是各項均為正數(shù)的等比數(shù) 列,且 a 1 a 2 6 , a 1 a 2 a 3 . (1) 求數(shù)列 a n 的通項公式; (2) b n 為各項非零的等差數(shù)列,其前 n 項和為 S n , 已知 S 2 n 1 b n b n 1 ,求數(shù)列 b n a n 的 前 n 項和 T n . 解:

3、(1) 設(shè) a n 的公比為 q , 由題意知 a 1 (1 q ) 6 , a 2 1 q a 1 q 2 , 又 a n 0 , 解得 a 1 2 , q 2 ,所以 a n 2 n . (2) 由題意知 S 2 n 1 ( 2 n 1 )( b 1 b 2 n 1 ) 2 (2 n 1) b n 1 , 又 S 2 n 1 b n b n 1 , b n 1 0 , 所以 b n 2 n 1. 令 c n b n a n ,則 c n 2 n 1 2 n , 因此 T n c 1 c 2 c n 3 2 5 2 2 7 2 3 2 n 1 2 n 1 2 n 1 2 n , 又 1 2

4、T n 3 2 2 5 2 3 7 2 4 2 n 1 2 n 2 n 1 2 n 1 , 兩式相減得 1 2 T n 3 2 ( 1 2 1 2 2 1 2 n 1 ) 2 n 1 2 n 1 , 所 以 T n 5 2 n 5 2 n . 從近年高考命題看,本講主要考查的內(nèi)容: (1) 以等 差 ( 比 ) 數(shù)列為背景,考查等差 ( 比 ) 的通項與求和公式、分 組轉(zhuǎn)化求和; (2) 以簡單的遞推關(guān)系為背景,考查錯位相 減 、裂項相消、倒序相加等求和的基本方法主要以解 答題的形式呈現(xiàn),中檔難度,且常與函數(shù)、不等式知識 交匯 熱點 1 數(shù)列求和 ( 多維探究 ) 數(shù)列求和的關(guān)鍵是分析其通項,

5、數(shù)列的基本求和方法 有倒序相加、裂 ( 拆 ) 項相消法、錯位相減法、分組轉(zhuǎn)化求 和裂項相消法和錯位相減法是常用的兩種方法 (1) 分組轉(zhuǎn)化求和:一個數(shù)列既不是等差數(shù)列,也不 是等比數(shù)列,若將這個數(shù)列適當(dāng)拆開,重新組合,就會變 成幾個可以求和的部分,分別求和,然后再合并 (2) 錯位相減法:主要用于求數(shù)列 a n b n 的前 n 項和, 其中 a n , b n 分別是等差數(shù)列和等比數(shù)列 (3) 裂項相消法:即將數(shù)列的通項分成兩個式子的代 數(shù)差的形式,然后通過累加抵消中間若干項的方法,裂 項相消法適用于形如 c a n a n 1 ( 其中 a n 是各項均不為零的 等差數(shù)列, c 為常數(shù)

6、) 的數(shù)列 溫馨提醒: 裂項求和時,易把系數(shù)寫成它的倒數(shù)或 忘記系數(shù)導(dǎo)致錯誤 命題視角 分組轉(zhuǎn)化求和 【例 1 1 】 已知數(shù)列 a n 的前 n 項和為 S n ,且 1 , a n , S n 成等差數(shù)列 (1) 求數(shù)列 a n 的通項公式; (2) 若數(shù)列 b n 滿足 a n b n 1 2 na n ,求數(shù)列 b n 的前 n 項和 T n . 解: (1) 由已知 1 , a n , S n 成等差數(shù)列得 2 a n 1 S n , 當(dāng) n 1 時, 2 a 1 1 S 1 1 a 1 ,所以 a 1 1 , 當(dāng) n 2 時, 2 a n 1 1 S n 1 , 得 2 a n 2

7、 a n 1 a n , 所以 a n 2 a n 1 ( n 2) ,且 a 1 1. 所以數(shù)列 a n 是以 1 為首項, 2 為公比的等比數(shù)列, 所以 a n a 1 q n 1 1 2 n 1 2 n 1 . (2) 由 a n b n 1 2 na n 得 b n 1 a n 2 n , 所以 T n b 1 b 2 b n 1 a 1 2 1 a 2 4 1 a n 2 n 1 a 1 1 a 2 1 a n (2 4 2 n ) 1 1 1 2 n 1 1 2 ( 2 2 n ) n 2 n 2 n 2 1 2 n 1 . 規(guī)律方法 1 在處理一般數(shù)列求和時,一定要注意運用轉(zhuǎn)化思

8、 想把一般的數(shù)列求和轉(zhuǎn)化 為等差數(shù)列或等比數(shù)列進行 求和在利用分組求和法求和時,常常根據(jù)需要對項數(shù) n 進行討論,最后再驗證是否可以合并為一個表達式 2 分組求和的策略: (1) 根據(jù)等差、等比數(shù)列分組; (2) 根據(jù)正號、負號分組 變式訓(xùn)練 已知數(shù)列 a n 的前 n 項和 S n n 2 n 2 , n N * . (1) 求數(shù)列 a n 的通項公式; (2) 設(shè) b n 2 a n ( 1) n a n ,求數(shù)列 b n 的前 2 n 項和 解: (1) 當(dāng) n 1 時, a 1 S 1 1 ; 當(dāng) n 2 時, a n S n S n 1 n 2 n 2 ( n 1 ) 2 ( n 1

9、 ) 2 n . 而 a 1 也滿足 a n n ,故數(shù)列 a n 的通項公式為 a n n . (2) 由 (1) 知 a n n ,故 b n 2 n ( 1) n n . 記數(shù)列 b n 的前 2 n 項和為 T 2 n , 則 T 2 n (2 1 2 2 2 2 n ) ( 1 2 3 4 2 n ) 記 A 2 1 2 2 2 2 n , B 1 2 3 4 2 n , 則 A 2 ( 1 2 2 n ) 1 2 2 2 n 1 2 , B ( 1 2) ( 3 4) (2 n 1) 2 n n . 故數(shù)列 b n 的前 2 n 項和 T 2 n A B 2 2 n 1 n 2.

10、命題視角 裂項相消法求和 【例 1 2 】 (2018 石家莊質(zhì)檢 ) 設(shè)正項等比數(shù)列 a n , a 4 81 ,且 a 2 , a 3 的等差中項為 3 2 ( a 1 a 2 ) (1) 求數(shù)列 a n 的通項公式; (2) 若 b n lo g 3 a 2 n 1 ,數(shù)列 b n 的前 n 項和為 S n ,數(shù)列 c n 滿足 c n 1 4 S n 1 , T n 為數(shù)列 c n 的前 n 項和,若 T n n 恒成立,求 的取值范圍 解: (1) 設(shè)等比數(shù)列 a n 的公比為 q ( q 0) , 由題意,得 a 4 a 1 q 3 81 , a 1 q a 1 q 2 3 ( a

11、 1 a 1 q ), 解得 a 1 3 , q 3. 所以 a n a 1 q n 1 3 n . (2) 由 (1 ) 得 b n log 3 a 2 n 1 log 3 3 2 n 1 2 n 1. 則 S n n ( b 1 b n ) 2 n 1 ( 2 n 1 ) 2 n 2 , 所以 c n 1 4 n 2 1 1 2 1 2 n 1 1 2 n 1 , 所以 T n 1 2 1 1 3 1 3 1 5 ( 1 2 n 1 1 2 n 1 ) n 2 n 1 . 若 T n n 2 n 1 n 恒成立,則 1 2 n 1 ( n N * ) 恒成 立, 則 1 2 n 1 max

12、 ,所以 1 3 . 規(guī)律方法 1 裂項相消法求和就是將數(shù)列中的每一項裂成兩項 或多項,使這些裂開的項出現(xiàn)有規(guī)律的相互抵消,要注 意消去了哪些項,保留了哪些項 2 消項規(guī)律:消項后前邊剩幾項,后邊就剩幾項, 前邊剩第幾項,后邊就剩倒數(shù)第幾項 變式訓(xùn)練 設(shè) S n 為數(shù)列 a n 的前 n 項和, S n 2 n 2 5 n . (1) 求證:數(shù)列 3 a n 為等比數(shù)列; (2) 設(shè) b n 2 S n 3 n ,求數(shù)列 n a n b n 的前 n 項和 T n . (1) 證明: S n 2 n 2 5 n , 所以當(dāng) n 2 時, a n S n S n 1 4 n 3. 又當(dāng) n 1

13、時, a 1 S 1 7 也滿足 a n 4 n 3 , 故 a n 4 n 3( n N * ) 由 a n 1 a n 4 ,得 3 a n 1 3 a n 3 a n 1 a n 3 4 81. 所以數(shù)列 3 a n 是公比為 81 的等比數(shù)列 (2) 解: 因為 b n 2 S n 3 n 4 n 2 10 n 3 n 4 n 2 7 n . 所以 n a n b n n ( 4 n 3 )( 4 n 2 7 n ) 1 4 1 4 n 3 1 4 n 7 . 因此 T n 1 4 ( 1 7 1 11 1 11 1 15 1 4 n 3 1 4 n 7 ) 1 4 ( 1 7 1 4

14、 n 7 ) n 7 ( 4 n 7 ) . 命題視角 錯位相減法求和 【例 1 3 】 (2018 長郡中學(xué)聯(lián)考 ) 已知 a n 是等差數(shù) 列, b n 是等比數(shù)列, a 1 1 , b 1 2 , b 2 2 a 2 , b 3 2 a 3 2. (1) 求 a n , b n 的通項公式; (2) 若 a n b n 的前 n 項和為 S n ,求證: S n 2. (1) 解: 設(shè)數(shù)列 a n 的公差為 d , b n 的公比為 q . 由題意得 2 q 2 ( 1 d ), 2 q 2 2 ( 1 2 d ) 2 , 解得 d 1 , q 2 , 或 d 1 , q 0 , ( 舍

15、去 ) , 所以 a n n , b n 2 n . (2) 證明: 由 (1) 知 a n b n n 2 n , 所以 S n 1 2 2 2 2 3 2 3 n 1 2 n 1 n 2 n , 1 2 S n 1 2 2 2 2 3 3 2 4 n 2 2 n 1 n 1 2 n n 2 n 1 , 兩式相減得 1 2 S n 1 2 1 2 2 1 2 3 1 2 n n 2 n 1 1 2 1 1 2 n 1 1 2 n 2 n 1 , 所以 S n 2 1 2 n 1 n 2 n ,所以 S n 2. 規(guī)律方法 1 一般地,如果數(shù)列 a n 是等差數(shù)列, b n 是等比數(shù) 列,求數(shù)

16、列 a n b n 的前 n 項和時,可采用錯位相減法求和, 一般是和式兩邊同乘以等比數(shù)列 b n 的公比,然后作差求 解 2 在寫 “ S n ” 與 “ qS n ” 的表達式時應(yīng)特別注意將兩式 “ 錯項對齊 ” ,以便下一步準(zhǔn)確地寫出 “ S n qS n ” 的表達 式 變式訓(xùn)練 (2018 合肥聯(lián)考 ) 公差不為 0 的等差數(shù)列 a n 的前 n 項和為 S n ,已知 S 4 10 ,且 a 1 , a 3 , a 9 成等比 數(shù)列 (1) 求 a n 的通項公式; (2) 求數(shù)列 a n 3 n 的前 n 項和 T n . 解: (1) 設(shè) a n 的公差為 d , 由題設(shè)得 4

17、 a 1 6 d 10 , a 2 3 a 1 a 9 , 即 4 a 1 6 d 10 , ( a 1 2 d ) 2 a 1 ( a 1 8 d ) . 解得 a 1 1 ,且 d 1. 所以 a n 1 ( n 1) 1 n . (2) 令 c n a n 3 n n 3 n , 則 T n c 1 c 2 c n 1 3 2 3 2 3 3 3 n 1 3 n 1 n 3 n , 1 3 T n 1 3 2 2 3 3 n 1 3 n n 3 n 1 , 得, 2 3 T n 1 3 1 3 2 1 3 n n 3 n 1 1 2 1 1 3 n n 3 n 1 1 2 1 2 3 n

18、 n 3 n 1 , 所以 T n 3 4 2 n 3 4 3 n . 熱點 2 a n 與 S n 的相關(guān)問題 1 數(shù)列通項 a n 與前 n 項和 S n 的關(guān)系, a n S 1 ( n 1 ), S n S n 1 ( n 2 ) . 2 應(yīng)用 a n 與 S n 的關(guān)系式 f ( a n , S n ) 0 時,應(yīng)特別注 意 n 1 時的情況,防止產(chǎn)生錯誤 【例 2 】 設(shè)數(shù)列 a n 的前 n 項和為 S n ,對任意的正 整數(shù) n ,都有 a n 5 S n 1 成立, b n 1 l og 2 | a n |,數(shù)列 b n 的前 n 項和為 T n , c n b n 1 T

19、n T n 1 . (1) 求數(shù)列 a n 的通項公式; (2) 求數(shù)列 c n 的前 n 項和 A n ,并求出 A n 的最值 解: (1) 因為 a n 5 S n 1 , n N * , 所以 a n 1 5 S n 1 1 , 兩式相減,得 a n 1 1 4 a n , 又當(dāng) n 1 時, a 1 5 a 1 1 ,知 a 1 1 4 , 所以數(shù)列 a n 是公比、首項均為 1 4 的等比數(shù)列 所以數(shù)列 a n 的通項公式為 a n 1 4 n . (2) b n 1 log 2 | a n | 2 n 1 , 所以數(shù)列 b n 的前 n 項和 T n n 2 , c n b n

20、1 T n T n 1 2 n 1 n 2 ( n 1 ) 2 1 n 2 1 ( n 1 ) 2 , 所以 A n 1 1 2 1 2 2 1 2 2 1 3 2 1 n 2 1 ( n 1 ) 2 1 1 ( n 1 ) 2 . 因此 A n 是單調(diào)遞增數(shù)列, 所以當(dāng) n 1 時, A n 有最小值 A 1 1 1 4 3 4 ; A n 沒有 最大值 規(guī)律方法 1 給出 S n 與 a n 的遞推關(guān)系求 a n ,常用思路是:一 是利用 S n S n 1 a n ( n 2) 轉(zhuǎn)化為 a n 的遞推關(guān)系,再求其 通項公式;二是轉(zhuǎn)化為 S n 的遞推關(guān)系,先求出 S n 與 n 之 間的

21、關(guān)系,再求 a n . 2 形如 a n 1 pa n q ( p 1 , q 0) ,可構(gòu)造一個新的 等比數(shù)列 變式訓(xùn)練 (2018 西安質(zhì)檢 ) 已知數(shù)列 a n 的首項 a 1 1 , S n 是數(shù)列 a n 的前 n 項和,且滿足 2( S n 1) ( n 3) a n . (1) 求數(shù)列 a n 的通項公式; (2) 設(shè)數(shù)列 b n 滿足 b n 1 a n a n 1 ,求數(shù)列 b n 的前 n 項 和 T n . 解: (1)2( S n 1) ( n 3) a n , 當(dāng) n 2 時, 2( S n 1 1) ( n 2) a n 1 , 由 得, 2 a n ( n 3)

22、a n ( n 2) a n 1 ,即 ( n 1) a n ( n 2) a n 1 , 又 a 1 1 , a n 0 , 則 a n n 2 a n 1 n 1 ( n 2) , 故數(shù)列 a n n 2 是首項為 1 3 的常數(shù)列 因此, a n 1 3 ( n 2) , n N * . (2) 由 (1) 知, b n 1 a n a n 1 9 ( n 2 )( n 3 ) 9 1 n 2 1 n 3 . 所以 T n b 1 b 2 b 3 b n 9( 1 3 1 4 ) 1 4 1 5 1 n 2 1 n 3 9 1 3 1 n 3 3 9 n 3 . 熱點 3 數(shù)列與函數(shù)不等

23、式的交匯問題 數(shù)列與函數(shù)的綜合問題一般是利用函數(shù)作為背景, 給出數(shù)列所滿足的條件,通常利用點在曲線上給出 S n 的 表達式,還有以曲線上的切點為背景的問題,解決這類 問題的關(guān)鍵在于利用數(shù)列與函數(shù)的對應(yīng)關(guān)系,將條件進 行準(zhǔn)確的轉(zhuǎn)化數(shù)列與不等式的綜合問題一般以數(shù)列為 載體,考查最值問題、不等關(guān)系或恒成立問題 【例 3 】 已知等差數(shù)列 a n 的公差為 1 ,且 a 2 a 7 a 12 6. (1) 求數(shù)列 a n 的通項公式 a n 與前 n 項和 S n ; (2) 數(shù)列 a n 的前 4 項抽去其中一項后,剩下三項按原 來順序恰為等比數(shù)列 b n 的前 3 項,記 b n 的前 n 項和

24、為 T m ,若存在 m N * ,使對任意 n N * ,總有 S n T m 恒成立,求實數(shù) 的取值范圍 解: (1) 由 a 2 a 7 a 12 6 得 a 7 2 , 又 d 1 ,所以 a 1 4 , 所以 a n 5 n , S n n ( 9 n ) 2 . (2) 由題意知 b 1 4 , b 2 2 , b 3 1 , 設(shè)等比數(shù)列 b n 的公比為 q , 則 q b 2 b 1 1 2 , 所以 T m 4 1 1 2 m 1 1 2 8 1 1 2 m , 因為 1 2 m 隨 m 增加而遞減, 所以 T m 為遞增數(shù)列,得 4 T m 8. 又 S n n ( 9 n

25、 ) 2 1 2 ( n 2 9 n ) 1 2 ( n 9 2 ) 2 81 4 , 故 ( S n ) m a x S 4 S 5 10 , 若存在 m N * ,使對任意 n N * 總有 S n T m , 則 10 8 ,得 2 ,即實數(shù) 的取值范圍為 (2 , ) 規(guī)律方法 1 求解數(shù)列與函數(shù)交匯問題注意兩點: (1) 數(shù)列是一 類特殊的函數(shù),函數(shù)定義域是正整數(shù)或其子集,在求數(shù) 列最值或不等關(guān)系 時要特別重視; (2) 解題時準(zhǔn)確構(gòu)造函 數(shù),利用函數(shù)性質(zhì)時注意限制條件 2 數(shù)列為背景的不等式恒成立、不等式證明,多與 數(shù)列的求和相聯(lián)系,最后利用數(shù)列或數(shù)列對應(yīng)函數(shù)的單 調(diào)性處理 變式訓(xùn)

26、練 (2018 北京燕博園質(zhì)檢 ) 已知數(shù)列 a n 滿 足 na n ( n 1) a n 1 2 n 2 2 n ( n 2 , 3 , 4 , ) , a 1 6. (1) 求證 a n n 1 為等差數(shù)列,并求出 a n 的通項公式; (2) 數(shù)列 1 a n 的前 n 項和為 S n ,求證: S n 5 12 . (1) 解: 因為 na n ( n 1) a n 1 2 n 2 2 n , 所以 a n n 1 a n 1 n 2( n 2) 所以數(shù)列 a n n 1 是以 a 1 2 3 為首項, 2 為公差的等差 數(shù)列 則 a n n 1 3 2( n 1) 2 n 1 ,所以 a n ( n 1)( 2 n 1) (2) 證明: 因為 1 a n 1 ( n 1 )( 2 n 1 ) 1 2 n ( n 1 ) 1 2 1 n 1 n 1 , 所以 S n 1 a 1 1 a 2 1 a n 1 6 1 2 ( 1 2 1 3 1 n 1 n 1 ) 1 6 1 4 1 2 ( n 1 ) 1 6 1 4 5 12 .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!