《18年全國一卷數(shù)學(xué)》由會(huì)員分享,可在線閱讀,更多相關(guān)《18年全國一卷數(shù)學(xué)(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2018年普通高等學(xué)招生全國統(tǒng)一考試(全國一卷)理科數(shù)學(xué)一、選擇題:本題有12小題,每小題5分,共60分。1、設(shè)z=,則|z|=A、0B、C、1D、2、已知集合A=x|x2-x-20,則A=A、x|-1x2B、x|-1x2C、x|x2D、x|x-1x|x23、某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番,為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:則下面結(jié)論中不正確的是:A、新農(nóng)村建設(shè)后,種植收入減少。B、新農(nóng)村建設(shè)后,其他收入增加了一倍以上。C、新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍。D、新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)
2、業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半。4、記Sn為等差數(shù)列an的前n項(xiàng)和,若3S3=S2+S4,a1=2,則a5=A、-12B、-10C、10D、125、設(shè)函數(shù)f(x)=x3+(a-1)x2+ax,若f(x)為奇函數(shù),則曲線y=f(x)在點(diǎn)(0,0)處的切線方程為:A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD為BC邊上的中線,E為AD的中點(diǎn),則=A、-B、-C、-+D、-7、某圓柱的高為2,底面周長為16,其三視圖如右圖,圓柱表面上的點(diǎn)M在正視圖上的對(duì)應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在左視圖上的對(duì)應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長度為A、B、C、3D、28
3、.設(shè)拋物線C:y=4x的焦點(diǎn)為F,過點(diǎn)(-2,0)且斜率為的直線與C交于M,N兩點(diǎn),則= A.5 B.6 C.7 D.89.已知函數(shù)f(x)=g(x)=f(x)+x+a,若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是 A. -1,0) B. 0,+) C. -1,+) D. 1,+)10.下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形。此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC. ABC的三邊所圍成的區(qū)域記為,黑色部分記為,其余部分記為。在整個(gè)圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自,的概率分別記為p1,p2,p3,則A. p1=p2B. p1=p3C. p2=p3D.
4、p1=p2+p311.已知雙曲線C: -y=1,O為坐標(biāo)原點(diǎn),F(xiàn)為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M,N. 若OMN為直角三角形,則MN= A. B.3 C. D.412.已知正方體的棱長為1,每條棱所在直線與平面所成的角都相等,則截此正方體所得截面面積的最大值為 A. B. C. D. 二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足約束條件則z=3x+2y的最大值為 .14.記Sn為數(shù)列an的前n項(xiàng)和.若Sn=2an+1,則S6= .15.從2位女生,4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有 種.(用數(shù)字填寫答案)16.已知函
5、數(shù)f(x)=2sinx+sin2x,則f(x)的最小值是 .三.解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第1721題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。(一)必考題:共60分。17.(12分)在平面四邊形ABCD中,ADC=90,A=45,AB=2,BD=5.(1)求cosADB;(2)若DC=,求BC.18.(12分)如圖,四邊形ABCD為正方形,E,F(xiàn)分別為AD,BC的中點(diǎn),以DF為折痕把DFC折起,使點(diǎn)C到達(dá)點(diǎn)P的位置,且PFBP.(1)證明:平面PEF平面ABFD;(2)求DP與平面ABFD所成角的正弦值.19.(12分)設(shè)橢圓
6、C: +y=1的右焦點(diǎn)為F,過F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(2,0).(1)當(dāng)l與x軸垂直時(shí),求直線AM的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),證明:OMA=OMB.20、(12分)某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品,檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件產(chǎn)品作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品做檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為P(0P1),且各件產(chǎn)品是否為不合格品相互獨(dú)立。(1)記20件產(chǎn)品中恰有2件不合格品的概率為f(P),求f(P)的最大值點(diǎn)。(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以
7、(1)中確定的作為P的值,已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對(duì)每件不合格品支付25元的賠償費(fèi)用。(i) 若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為X,求EX:(ii) 以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?21、(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn), ,證明: .(二)選考題:共10分。請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。22. 選修4-4:坐標(biāo)系與參數(shù)方程(10分)在直角坐標(biāo)系xOy中,曲線C的方程為y=kx+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為p+2p-3=0.(1) 求C的直角坐標(biāo)方程:(2) 若C與C有且僅有三個(gè)公共點(diǎn),求C的方程.23. 選修4-5:不等式選講(10分)已知f(x)=x+1-ax-1.(1) 當(dāng)a=1時(shí), 求不等式f(x)1的解集;(2) 當(dāng)x(0,1)時(shí)不等式f(x)x成立,求a的取值范圍.